School of Molecular Sciences, Arizona State University, Tempe, Arizona 85251, United States.
Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe Arizona 85251, United States.
Biomacromolecules. 2024 Jul 8;25(7):3865-3876. doi: 10.1021/acs.biomac.4c00372. Epub 2024 Jun 11.
In biology, nanomachines like the ribosome use nucleic acid templates to synthesize polymers in a sequence-specific, programmable fashion. Researchers have long been interested in using the programmable properties of nucleic acids to enhance chemical reactions via colocalization of reagents using complementary nucleic acid handles. In this review, we describe progress in using nucleic acid templates, handles, or splints to enhance the covalent coupling of peptides to other peptides or oligonucleotides. We discuss work in several areas: creating ribosome-mimetic systems, synthesizing bioactive peptides on DNA or RNA templates, linking peptides into longer molecules and bioactive antibody mimics, and scaffolding peptides to build protein-mimetic architectures. We close by highlighting the challenges that must be overcome in nucleic acid-templated peptide chemistry in two areas: making full-length, functional proteins from synthetic peptides and creating novel protein-mimetic architectures not possible through macromolecular folding alone.
在生物学中,核糖体等纳米机器利用核酸模板以序列特异性和可编程的方式合成聚合物。研究人员一直有兴趣利用核酸的可编程特性,通过使用互补核酸手柄将试剂共定位来增强化学反应。在这篇综述中,我们描述了使用核酸模板、手柄或支架来增强肽与其他肽或寡核苷酸的共价偶联的进展。我们讨论了几个领域的工作:创建核糖体模拟系统、在 DNA 或 RNA 模板上合成生物活性肽、将肽连接成长链分子和生物活性抗体模拟物,以及将肽支架构建成蛋白质模拟结构。最后,我们强调了在核酸模板化肽化学中必须克服的两个领域的挑战:从合成肽中制造全长功能性蛋白质和创建仅通过大分子折叠不可能实现的新型蛋白质模拟结构。