文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

体外粒细胞-巨噬细胞集落刺激因子(GM-CSF)对梗阻性无精子症患者精子运动和能量代谢相关基因表达及卵胞浆内单精子注射结局的影响。

In vitro effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on the expression of genes related to sperm motility and energy metabolism and intracytoplasmic sperm injection outcomes in obstructive azoospermic patients.

机构信息

Department of Anatomical Sciences and Pathology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.

Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

出版信息

Mol Biol Rep. 2024 Jun 11;51(1):727. doi: 10.1007/s11033-024-09676-2.


DOI:10.1007/s11033-024-09676-2
PMID:38861014
Abstract

BACKGROUND: The presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor in various testicular cells and spermatozoa suggests a potential role in enhancing spermatogonial and postmeiotic cell development. Moreover, GM-CSF activates the pivotal pathways implicated in sperm motility regulation and glucose metabolism. However, the impact of GM-CSF on testicular biopsies from patients with obstructive azoospermia (OA) remains unexplored. Therefore, this study aimed to investigate the in vitro effects of GM-CSF on the expression of genes related to glucose transporters and signaling pathways, sperm motility, and viability in testicular biopsies. METHODS AND RESULTS: Following testicular sperm extraction from 20 patients diagnosed with OA, each sample was divided into two parts: the experimental samples were incubated with medium containing 2 ng/ml GM-CSF at 37 °C for 60 min, and the control samples were incubated with medium without GM-CSF. Subsequently, the oocytes retrieved from the partner were injected with sperm from the treatment and control groups. The sperm parameters (motility and viability), the expression levels of sperm motility-related genes (PIK3R1, PIK3CA, and AKT1), and the expression levels of sperm energy metabolism-related genes (GLUT1, GLUT3, and GLUT14) were assessed. Furthermore, the fertilization and day 3 embryo development rate and embryo quality were evaluated. Compared with those in the nontreated group, the motility parameters and the mRNA expression levels of PIK3R1, AKT1, and GLUT3 in testicular sperm supplemented with GM-CSF were significantly greater (p < 0.05). However, no significant differences in the mRNA expression of PIK3CA, GLUT1, or GLUT14 were detected. According to the ICSI results, compared with the control group, the GM-CSF treatment group exhibited significantly greater fertilization rates (p = 0.027), Day 3 embryo development rate (p = 0.001), and proportions of good-quality embryos (p = 0.002). CONCLUSIONS: GM-CSF increased the expression of genes related to motility and the energy metabolism pathway and effectively promoted the motility of testis-extracted spermatozoa, consequently yielding positive clinical outcomes.

摘要

背景:粒细胞-巨噬细胞集落刺激因子(GM-CSF)及其受体存在于各种睾丸细胞和精子中,提示其在增强精原细胞和减数分裂后细胞发育方面具有潜在作用。此外,GM-CSF 激活了与精子运动调节和葡萄糖代谢相关的关键途径。然而,GM-CSF 对梗阻性无精子症(OA)患者睾丸活检的影响仍未得到探索。因此,本研究旨在研究 GM-CSF 对葡萄糖转运体和信号通路、精子运动和活力相关基因表达的体外影响,在睾丸活检中。

方法和结果:从 20 名诊断为 OA 的患者中进行睾丸精子提取后,将每个样本分为两部分:实验组在含有 2ng/ml GM-CSF 的培养基中于 37°C 孵育 60 分钟,对照组在不含 GM-CSF 的培养基中孵育。随后,从伴侣中取出卵母细胞,并用治疗组和对照组的精子进行注射。评估精子参数(运动和活力)、与精子运动相关的基因(PIK3R1、PIK3CA 和 AKT1)的表达水平以及与精子能量代谢相关的基因(GLUT1、GLUT3 和 GLUT14)的表达水平。此外,评估受精和第 3 天胚胎发育率和胚胎质量。与未处理组相比,GM-CSF 补充的睾丸精子的运动参数和 PIK3R1、AKT1 和 GLUT3 的 mRNA 表达水平显著增加(p<0.05)。然而,PIK3CA、GLUT1 或 GLUT14 的 mRNA 表达无显著差异。根据 ICSI 结果,与对照组相比,GM-CSF 处理组的受精率显著增加(p=0.027),第 3 天胚胎发育率(p=0.001)和优质胚胎比例(p=0.002)。

结论:GM-CSF 增加了与运动和能量代谢途径相关的基因的表达,有效促进了睾丸提取精子的运动,从而产生了积极的临床结果。

相似文献

[1]
In vitro effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on the expression of genes related to sperm motility and energy metabolism and intracytoplasmic sperm injection outcomes in obstructive azoospermic patients.

Mol Biol Rep. 2024-6-11

[2]
GM-CSF (granulocyte-macrophage colony-stimulating factor) treatment improves sperm parameters in men with oligoasthenoteratospermia via PI3K/AKT pathway.

Andrologia. 2022-8

[3]
GM-CSF treatment of frozen bovine sperm improves function, fertilization, and subsequent embryo development.

Theriogenology. 2025-3-15

[4]
Expression of the GM-CSF receptor in ovine spermatozoa: GM-CSF effect on sperm viability and motility of sperm subpopulations after the freezing-thawing process.

Theriogenology. 2007-5

[5]
Granulocyte-Macrophage Colony-Stimulating Factor Cytokine Addition After the Freeze-Thawing Process Improves Human Sperm Motility and Vitality in Asthenoteratozoospermia Patients.

Biopreserv Biobank. 2024-2

[6]
Expression of granulocyte-macrophage colony stimulating factor (GM-CSF) in male germ cells: GM-CSF enhances sperm motility.

Theriogenology. 2003-10-1

[7]
In-vitro culture of spermatozoa induces motility and increases implantation and pregnancy rates after testicular sperm extraction and intracytoplasmic sperm injection.

Hum Reprod. 1999-11

[8]
Influence of motility and vitality in intracytoplasmic sperm injection with ejaculated and testicular sperm.

Andrologia. 2005-8

[9]
Outcome of intracytoplasmic sperm injection cycles with fresh testicular spermatozoa obtained on the day of or the day before oocyte collection and with cryopreserved testicular sperm in patients with azoospermia.

Fertil Steril. 2013-7-25

[10]
Comparison of the Effects of Different Testicular Sperm Extraction Methods on the Embryonic Development of Azoospermic Men in Intracytoplasmic Sperm Injection (ICSI) Cycles: A Retrospective Cohort Study.

Biomed Res Int. 2021

引用本文的文献

[1]
Deciphering the Therapeutic Mechanisms of Wuzi Yanzong Pill for Asthenozoospermia: A Synergistic Approach Combining Bioinformatics and Molecular Dynamics.

Cell Biochem Biophys. 2025-8-9

[2]
CECT5713 Increases Term Pregnancies in Women with Infertility of Unknown Origin: A Randomized, Triple-Blind, Placebo-Controlled Trial.

Nutrients. 2025-5-29

本文引用的文献

[1]
Granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced maturation of spermatogonial cells from prepubertal mice in vitro is enhanced by testosterone.

Eur Cytokine Netw. 2023-12-1

[2]
How the Adequate Choice of Plant Species Favors the Restoration Process in Areas Susceptible to Extreme Frost Events.

Biology (Basel). 2023-10-26

[3]
Granulocyte-Macrophage Colony-Stimulating Factor Cytokine Addition After the Freeze-Thawing Process Improves Human Sperm Motility and Vitality in Asthenoteratozoospermia Patients.

Biopreserv Biobank. 2024-2

[4]
Role of GM-CSF in regulating metabolism and mitochondrial functions critical to macrophage proliferation.

Mitochondrion. 2022-1

[5]
Protein kinases regulate hyperactivated motility of human sperm.

Chin Med J (Engl). 2021-10-20

[6]
An integrated overview on the regulation of sperm metabolism (glycolysis-Krebs cycle-oxidative phosphorylation).

Anim Reprod Sci. 2022-11

[7]
Evidence that extrapancreatic insulin production is involved in the mediation of sperm survival.

Mol Cell Endocrinol. 2021-4-15

[8]
Mean Platelet Volume as a Marker of Vasculogenic Erectile Dysfunction and Future Cardiovascular Risk.

J Clin Med. 2020-8-4

[9]
Leucine mediates autophagosome-lysosome fusion and improves sperm motility by activating the PI3K/Akt pathway.

Oncotarget. 2017-12-4

[10]
Glucose transporters: physiological and pathological roles.

Biophys Rev. 2016-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索