Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany.
German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
J Mol Evol. 2024 Aug;92(4):432-448. doi: 10.1007/s00239-024-10181-0. Epub 2024 Jun 11.
Gene duplication is one of the most important sources of novel genotypic diversity and the subsequent evolution of phenotypic diversity. Determining the evolutionary history and functional changes of duplicated genes is crucial for a comprehensive understanding of adaptive evolution. The evolutionary history of visual opsin genes is very dynamic, with repeated duplication events followed by sub- or neofunctionalization. While duplication of the green-sensitive opsins rh2 is common in teleost fish, fewer cases of multiple duplication events of the red-sensitive opsin lws are known. In this study, we investigate the visual opsin gene repertoire of the anabantoid fishes, focusing on the five lws opsin genes found in the genus Betta. We determine the evolutionary history of the lws opsin gene by taking advantage of whole-genome sequences of nine anabantoid species, including the newly assembled genome of Betta imbellis. Our results show that at least two independent duplications of lws occurred in the Betta lineage. The analysis of amino acid sequences of the lws paralogs of Betta revealed high levels of diversification in four of the seven transmembrane regions of the lws protein. Amino acid substitutions at two key-tuning sites are predicted to lead to differentiation of absorption maxima (λ) between the paralogs within Betta. Finally, eye transcriptomics of B. splendens at different developmental stages revealed expression shifts between paralogs for all cone opsin classes. The lws genes are expressed according to their relative position in the lws opsin cluster throughout ontogeny. We conclude that temporal collinearity of lws expression might have facilitated subfunctionalization of lws in Betta and teleost opsins in general.
基因复制是新基因型多样性和表型多样性后续进化的最重要来源之一。确定复制基因的进化历史和功能变化对于全面了解适应性进化至关重要。视觉视蛋白基因的进化历史非常动态,经历了多次重复复制事件,随后是亚功能化或新功能化。虽然绿色敏感视蛋白 rh2 在硬骨鱼类中普遍存在复制,但红色敏感视蛋白 lws 的多次重复事件则较少见。在这项研究中,我们研究了拟态鱼类的视觉视蛋白基因库,重点关注 Betta 属中发现的五个 lws 视蛋白基因。我们通过利用包括 Betta imbellis 新组装基因组在内的 9 种拟态鱼类的全基因组序列,确定了 lws 视蛋白基因的进化历史。我们的结果表明,在 Betta 谱系中至少发生了两次独立的 lws 复制。对 Betta 的 lws 旁系同源物的氨基酸序列分析表明,在 lws 蛋白的七个跨膜区域中的四个区域发生了高度多样化。预测两个关键调谐位点的氨基酸取代会导致 Betta 内的旁系同源物之间的吸收最大值 (λ) 分化。最后,对不同发育阶段的 B. splendens 的眼转录组学分析表明,所有锥体视蛋白类别的旁系同源物之间都存在表达转移。 lws 基因根据其在 lws 视蛋白簇中的相对位置在整个个体发生过程中表达。我们得出结论, lws 表达的时间共线性可能促进了 Betta 和硬骨鱼类视蛋白一般的 lws 亚功能化。