Zeng Xiaojun, Jiang Xiao, Ning Ya, Gao Yanfeng, Che Renchao
School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, People's Republic of China.
School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
Nanomicro Lett. 2024 Jun 11;16(1):213. doi: 10.1007/s40820-024-01449-7.
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor-semiconductor-metal heterostructure system, Mo-MXene/Mo-metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott-Schottky junctions. By skillfully combining these distinct functional components (Mo-MXene, MoS, metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces. The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide, which achieved remarkable reflection loss values of - 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
探索新型多元异质结构已成为开发高性能电磁波(EMW)吸收材料的关键策略。然而,传统异质结构中的损耗机制相对简单,以经验观察为指导,且不具有单调性。在这项工作中,我们提出了一种新型的半导体-半导体-金属异质结构体系,即Mo-MXene/Mo-金属硫化物(金属 = Sn、Fe、Mn、Co、Ni、Zn和Cu),其中包括半导体结和莫特-肖特基结。通过巧妙地结合这些不同的功能组件(Mo-MXene、MoS、金属硫化物),我们能够设计出具有卓越吸收能力、宽有效吸收带宽和超薄匹配厚度的多重异质界面。半导体-半导体-金属异质结构的成功构建产生了一个增强电子转移的内建电场,这一点已通过密度泛函理论得到证实,该电场与多种介电极化机制协同作用,大幅增强了EMW吸收。我们详细介绍了一系列同时具有半导体-半导体和半导体-金属界面的Mo-MXene/Mo-金属硫化物的成功合成。这些成果在Mo-MXene/Mo-Sn硫化物中最为显著,在仅1.885毫米的匹配厚度下实现了-70.6 dB的显著反射损耗值。雷达散射截面计算表明,这些MXene/Mo-金属硫化物在实际军事隐身技术中具有巨大潜力。这项工作突破了传统组件设计的限制,为创建具有强大EMW吸收能力的先进MXene基复合材料开辟了一条新途径。