Wang Hongqiu, Chen Jian, Zhang Shichen, He Yuan, Xu Jinfeng, Wu Mengwan, He Jinlan, Liao Wenjun, Luo Xiangde
IEEE Trans Med Imaging. 2024 Dec;43(12):4078-4090. doi: 10.1109/TMI.2024.3412923. Epub 2024 Dec 2.
Nasopharyngeal carcinoma (NPC) is a prevalent and clinically significant malignancy that predominantly impacts the head and neck area. Precise delineation of the Gross Tumor Volume (GTV) plays a pivotal role in ensuring effective radiotherapy for NPC. Despite recent methods that have achieved promising results on GTV segmentation, they are still limited by lacking carefully-annotated data and hard-to-access data from multiple hospitals in clinical practice. Although some unsupervised domain adaptation (UDA) has been proposed to alleviate this problem, unconditionally mapping the distribution distorts the underlying structural information, leading to inferior performance. To address this challenge, we devise a novel Source-Free Active Domain Adaptation framework to facilitate domain adaptation for the GTV segmentation task. Specifically, we design a dual reference strategy to select domain-invariant and domain-specific representative samples from a specific target domain for annotation and model fine-tuning without relying on source-domain data. Our approach not only ensures data privacy but also reduces the workload for oncologists as it just requires annotating a few representative samples from the target domain and does not need to access the source data. We collect a large-scale clinical dataset comprising 1057 NPC patients from five hospitals to validate our approach. Experimental results show that our method outperforms the previous active learning (e.g., AADA and MHPL) and UDA (e.g., Tent and CPR) methods, and achieves comparable results to the fully supervised upper bound, even with few annotations, highlighting the significant medical utility of our approach. In addition, there is no public dataset about multi-center NPC segmentation, we will release code and dataset for future research (Git) https://github.com/whq-xxh/Active-GTV-Seg.
鼻咽癌(NPC)是一种常见且具有临床重要意义的恶性肿瘤,主要影响头颈部区域。精确勾画大体肿瘤体积(GTV)在确保鼻咽癌有效放疗中起着关键作用。尽管最近的方法在GTV分割方面取得了有希望的结果,但它们仍然受到临床实践中缺乏精心标注的数据以及难以获取来自多家医院的数据的限制。虽然已经提出了一些无监督域适应(UDA)方法来缓解这个问题,但无条件地映射分布会扭曲潜在的结构信息,导致性能较差。为了应对这一挑战,我们设计了一种新颖的无源主动域适应框架,以促进GTV分割任务的域适应。具体而言,我们设计了一种双重参考策略,从特定目标域中选择域不变和域特定的代表性样本进行标注和模型微调,而无需依赖源域数据。我们的方法不仅确保了数据隐私,还减轻了肿瘤学家的工作量,因为它只需要标注来自目标域的一些代表性样本,而无需访问源数据。我们收集了一个包含来自五家医院的1057例鼻咽癌患者的大规模临床数据集来验证我们的方法。实验结果表明,我们的方法优于先前的主动学习(例如,AADA和MHPL)和UDA(例如,Tent和CPR)方法,并即使在标注很少的情况下也能取得与完全监督上限相当的结果,突出了我们方法的重大医学实用性。此外,目前没有关于多中心鼻咽癌分割的公共数据集,我们将发布代码和数据集以供未来研究(Git)https://github.com/whq-xxh/Active-GTV-Seg 。