Wang Tengxiao, Tian Min, Wang Haibing, Zhong Zhengqing, He Junxian, Tang Fang, Zhou Xichuan, Lin Yingcheng, Yu Shuang-Ming, Liu Liyuan, Shi Cong
IEEE Trans Biomed Circuits Syst. 2025 Feb;19(1):209-225. doi: 10.1109/TBCAS.2024.3412908. Epub 2025 Feb 11.
This paper presents a digital edge neuromorphic spiking neural network (SNN) processor chip for a variety of edge intelligent cognitive applications. This processor allows high-speed, high-accuracy and fully on-chip spike-timing-based multi-layer SNN learning. It is characteristic of hierarchical multi-core architecture, event-driven processing paradigm, meta-crossbar for efficient spike communication, and hybrid and reconfigurable parallelism. A prototype chip occupying an active silicon area of 7.2 mm was fabricated using a 65-nm 1P9M CMOS process. when running a 256-256-256-256-200 4-layer fully-connected SNN on downscaled 16 × 16 MNIST images. it typically achieved a high-speed throughput of 802 and 2270 frames/s for on-chip learning and inference, respectively, with a relatively low power dissipation of around 61 mW at a 100 MHz clock rate under a 1.0V core power supply, Our on-chip learning results in comparably high visual recognition accuracies of 96.06%, 83.38%, 84.53%, 99.22% and 100% on the MNIST, Fashion-MNIST, ETH-80, Yale-10 and ORL-10 datasets, respectively. In addition, we have successfully applied our neuromorphic chip to demonstrate high-resolution satellite cloud image segmentation and non-visual tasks including olfactory classification and textural news categorization. These results indicate that our neuromorphic chip is suitable for various intelligent edge systems under restricted cost, energy and latency budgets while requiring in-situ self-adaptative learning capability.
本文提出了一种用于各种边缘智能认知应用的数字边缘神经形态脉冲神经网络(SNN)处理器芯片。该处理器支持基于脉冲定时的高速、高精度且完全片上的多层SNN学习。它具有分层多核架构、事件驱动处理范式、用于高效脉冲通信的元交叉开关以及混合和可重构并行性等特点。采用65纳米1P9M CMOS工艺制造了一个有源硅面积为7.2平方毫米的原型芯片。在对缩小到16×16的MNIST图像运行256-256-256-256-200的4层全连接SNN时,它在片上学习和推理时通常分别实现了802帧/秒和2270帧/秒的高速吞吐量,在1.0V核心电源下100MHz时钟速率时功耗相对较低,约为61毫瓦。我们的片上学习在MNIST、Fashion-MNIST、ETH-80、Yale-10和ORL-10数据集上分别实现了96.06%、83.38%、84.53%、99.22%和100%的相当高的视觉识别准确率。此外,我们已成功应用我们的神经形态芯片来演示高分辨率卫星云图像分割以及包括嗅觉分类和纹理新闻分类在内的非视觉任务。这些结果表明,我们的神经形态芯片适用于在成本、能量和延迟预算受限的情况下需要原位自适应学习能力的各种智能边缘系统。