Chen Faquan, Tian Qingyang, Xie Lisheng, Zhou Yifan, Wu Ziren, Wu Liangshun, Ying Rendong, Wen Fei, Liu Peilin
IEEE Trans Biomed Circuits Syst. 2025 Jun;19(3):629-644. doi: 10.1109/TBCAS.2024.3470520.
Bio-inspired neuromorphic hardware with learning ability is highly promising to achieve human-like intelligence, particularly in terms of high energy efficiency and strong environmental adaptability. Though many customized prototypes have demonstrated learning ability, learning on neuromorphic hardware still lacks a bio-plausible and unified learning framework, and inherent spike-based sparsity and parallelism have not been fully exploited, which fundamentally limits their computational efficiency and scale. Therefore, we develop a unified, event-driven, and massively parallel multi-core neuromorphic online learning processor, namely EPOC. We present a neuromodulation-based neuromorphic online learning framework to unify various learning algorithms, and EPOC supports high-accuracy local/global supervised Spike Neural Network (SNN) learning with a low-memory-demand streaming single-sample learning strategy through different neuromodulator formulations. EPOC leverages a novel event-driven computation method that fully exploits spike-based sparsity throughout the forward-backward learning phases, and parallel multi-channel and multi-core computing architecture, bringing 9.9$\times$ time efficiency improvement compared with the baseline architecture. We synthesize EPOC in a 28-nm CMOS process and perform extensive benchmarking. EPOC achieves state-of-the-art learning accuracy of 99.2%, 98.2%, and 94.3% on the MNIST, NMNIST, and DVS-Gesture benchmarks, respectively. Local-learning EPOC achieves 2.9$\times$ time efficiency improvement compared with the global learning counterpart. EPOC operates at a typical clock frequency of 100 MHz, providing a peak 328 GOPS/51 GSOPS throughput and a 5.3 pJ/SOP energy efficiency.
具有学习能力的受生物启发的神经形态硬件在实现类人智能方面极具前景,特别是在高能效和强环境适应性方面。尽管许多定制原型已展示出学习能力,但神经形态硬件上的学习仍缺乏一个具有生物合理性且统一的学习框架,基于脉冲的固有稀疏性和并行性也未得到充分利用,这从根本上限制了它们的计算效率和规模。因此,我们开发了一种统一的、事件驱动的、大规模并行的多核神经形态在线学习处理器,即EPOC。我们提出了一种基于神经调节的神经形态在线学习框架来统一各种学习算法,并且EPOC通过不同的神经调节因子配方,以低内存需求的流单样本学习策略支持高精度的局部/全局监督脉冲神经网络(SNN)学习。EPOC利用一种新颖的事件驱动计算方法,该方法在整个前向-反向学习阶段充分利用基于脉冲的稀疏性,以及并行多通道和多核计算架构,与基线架构相比,带来了9.9倍的时间效率提升。我们在28纳米CMOS工艺中对EPOC进行了综合,并进行了广泛的基准测试。EPOC在MNIST、NMNIST和DVS-Gesture基准测试中分别达到了99.2%、98.2%和94.3%的领先学习准确率。与全局学习的对应物相比,局部学习的EPOC实现了2.9倍的时间效率提升。EPOC以100 MHz的典型时钟频率运行,提供了328 GOPS/51 GSOPS的峰值吞吐量和5.3 pJ/SOP的能量效率。