IEEE Trans Biomed Eng. 2024 Nov;71(11):3221-3231. doi: 10.1109/TBME.2024.3412814. Epub 2024 Oct 25.
Transcorneal electrical stimulation (TES) is a promising approach to delay retinal degeneration by inducing extracellular electric field-driven neuroprotective effects within photoreceptors. Although achieving precise electric field control is feasible in vitro, characterizing these fields becomes intricate and largely unexplored in vivo due to uneven distribution in the heterogeneous body. In this paper, we investigate and characterize electric fields within the retina during TES to assess the potential for therapeutic approaches Methods: We developed a computational model of a rat's head, enabling us to generate predictive simulations of the voltage and current density induced in the retina. Subsequently, an in vivo experimental setup involving Royal College of Surgeon (RCS) rats was implemented to measure the voltage across the retina using identical electrode configurations as employed in the simulations.
A stimulation amplitude of 0.2-0.3 mA may be necessary during TES in rats to induce a current density of at least 20 A/[Formula: see text] in the retina, which is the lower limit for triggering neuroprotective effects according to culture studies on neural cells. Measurement taken from cadaveric pigs' eyes revealed that a stimulation amplitude of 1 mA is necessary for achieving the same current density.
The computational modeling approach presented in this study was validated with experimental data and can be leveraged for predictive simulations to optimize the electrode design and stimulation parameters of TES.
Once validated, the flexibility and low research cost of computational models are valuable in optimization studies where testing on live subjects is not feasible.
经皮电刺激(TES)是一种很有前途的方法,可以通过在感光细胞内诱导细胞外电场驱动的神经保护作用来延迟视网膜变性。虽然在体外实现精确的电场控制是可行的,但由于在不均匀的体内分布,这些场的特征在体内变得复杂且在很大程度上尚未得到探索。在本文中,我们研究并描述了 TES 过程中视网膜内的电场,以评估治疗方法的潜力。
我们开发了一个大鼠头部的计算模型,使我们能够对视网膜内诱导的电压和电流密度进行预测性模拟。随后,我们实施了一个涉及皇家外科学院(RCS)大鼠的体内实验设置,使用与模拟中相同的电极配置来测量视网膜上的电压。
在大鼠的 TES 中,可能需要 0.2-0.3 mA 的刺激幅度来诱导至少 20 A/[公式:见正文]的视网膜内电流密度,这是根据对神经细胞的培养研究触发神经保护作用的下限。从尸体猪眼获得的测量结果表明,需要 1 mA 的刺激幅度才能达到相同的电流密度。
本研究中提出的计算建模方法通过实验数据进行了验证,可以用于预测性模拟,以优化 TES 的电极设计和刺激参数。
一旦得到验证,计算模型的灵活性和低研究成本在优化研究中很有价值,在这些研究中,对活体进行测试是不可行的。