School of Biomedical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, People's Republic of China.
Graduate School of Biomedical Engineering, University of New South Wales, NSW 2052 Sydney, Australia.
J Neural Eng. 2022 Sep 14;19(5). doi: 10.1088/1741-2552/ac8e32.
Trans-corneal electrical stimulation (TcES) produces therapeutic effects on many ophthalmic diseases non-invasively. Existing clinical TcES devices use largely variable design of electrode distribution and stimulation parameters. Better understanding of how electrode configuration paradigms and stimulation parameters influence the electric field distribution on the retina, will be beneficial to the design of next-generation TcES devices.In this study, we constructed a realistic finite element human head model with fine eyeball structure. Commonly used DTL-Plus and ERG-Jet electrodes were simulated. We then conductedinvestigations of retina observation surface (ROS) electric field distributions induced by different return electrode configuration paradigms and different stimulus intensities.Our results suggested that the ROS electric field distribution could be modulated by re-designing TcES electrode settings and stimulus parameters. Under far return location paradigms, either DTL-Plus or ERG-Jet approach could induce almost identical ROS electric field distribution regardless where the far return was located. However, compared with the ERG-Jet mode, DTL-Plus stimulation induced stronger nasal lateralization. In contrast, ERG-Jet stimulation induced relatively stronger temporal lateralization. The ROS lateralization can be further tweaked by changing the DTL-Plus electrode length.These results may contribute to the understanding of the characteristics of DTL-Plus and ERG-Jet electrodes based electric field distribution on the retina, providing practical implications for the therapeutic application of TcES.
经角膜电刺激(TcES)可无创地对多种眼科疾病产生治疗效果。现有的临床 TcES 设备使用的电极分布和刺激参数设计差异较大。更好地了解电极配置模式和刺激参数如何影响视网膜上的电场分布,将有助于下一代 TcES 设备的设计。
在这项研究中,我们构建了具有精细眼球结构的逼真有限元人体头部模型。模拟了常用的 DTL-Plus 和 ERG-Jet 电极。然后,我们研究了不同返回电极配置模式和不同刺激强度引起的视网膜观察面(ROS)电场分布。
我们的结果表明,可以通过重新设计 TcES 电极设置和刺激参数来调节 ROS 电场分布。在远返回位置模式下,无论远返回位置在哪里,DTL-Plus 或 ERG-Jet 方法都可以诱导几乎相同的 ROS 电场分布。然而,与 ERG-Jet 模式相比,DTL-Plus 刺激诱导的鼻侧化更强。相比之下,ERG-Jet 刺激诱导的颞侧化相对更强。通过改变 DTL-Plus 电极长度,可以进一步调整 ROS 侧化。
这些结果可能有助于理解 DTL-Plus 和 ERG-Jet 电极基于视网膜上电场分布的特性,为 TcES 的治疗应用提供实际意义。