Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
ACS Nano. 2024 Jun 25;18(25):16151-16165. doi: 10.1021/acsnano.4c01171. Epub 2024 Jun 11.
Immune modulation through the intracellular delivery of nucleoside-modified mRNA to immune cells is an attractive approach for immunoengineering, with applications in infectious disease, cancer immunotherapy, and beyond. Lipid nanoparticles (LNPs) have come to the fore as a promising nucleic acid delivery platform, but LNP design criteria remain poorly defined, making the rate-limiting step for LNP discovery the screening process. In this study, we employed high-throughput LNP screening based on molecular barcoding to investigate the influence of LNP composition on immune tropism with applications in vaccines and systemic immunotherapies. Screening a large LNP library under both intramuscular () and intravenous () injection, we observed differential influences on LNP uptake by immune populations across the two administration routes, gleaning insight into LNP design criteria for immunoengineering. In validation studies, the lead LNP formulation for administration demonstrated substantial mRNA translation in the spleen and draining lymph nodes with a more favorable biodistribution profile than LNPs formulated with the clinical standard ionizable lipid DLin-MC3-DMA (MC3). The lead LNP formulations for administration displayed potent immune transfection in the spleen and peripheral blood, with one lead LNP demonstrating substantial transfection of splenic dendritic cells and another inducing substantial transfection of circulating monocytes. Altogether, the immunotropic LNPs identified by high-throughput screening demonstrated significant promise for both locally- and systemically-delivered mRNA and confirmed the value of the LNP design criteria gleaned from our screening process, which could potentially inform future endeavors in mRNA vaccine and immunotherapy applications.
通过将核苷修饰的 mRNA 递送到免疫细胞内来调节免疫是免疫工程学的一种有吸引力的方法,其应用领域包括传染病、癌症免疫疗法等。脂质纳米颗粒 (LNP) 已成为一种很有前途的核酸递送平台,但 LNP 的设计标准仍未得到很好的定义,这使得 LNP 发现的限速步骤是筛选过程。在这项研究中,我们采用基于分子条码的高通量 LNP 筛选,研究 LNP 组成对疫苗和全身免疫疗法中免疫趋向性的影响。我们在肌肉内 () 和静脉内 () 注射两种途径下筛选了一个大型 LNP 文库,观察到两种给药途径对免疫群体摄取 LNP 的影响存在差异,从而深入了解 LNP 设计标准在免疫工程学中的应用。在验证研究中,用于 给药的领先 LNP 配方在脾脏和引流淋巴结中显示出大量的 mRNA 翻译,其生物分布谱优于用临床标准可离子化脂质 DLin-MC3-DMA (MC3) 配制的 LNP。用于 给药的领先 LNP 配方在脾脏和外周血中表现出有效的免疫转染,其中一种领先 LNP 配方在脾脏树突状细胞中显示出大量转染,另一种配方诱导循环单核细胞大量转染。总之,高通量筛选鉴定的免疫靶向 LNP 对局部和全身递送的 mRNA 都显示出显著的应用前景,并证实了我们筛选过程中得出的 LNP 设计标准的价值,这可能为 mRNA 疫苗和免疫疗法应用的未来研究提供信息。
ACS Nano. 2024-10-22
Biomater Sci. 2023-1-31