Suppr超能文献

创伤后应激障碍患者的个体化治疗选择:个性化优势指数的外部验证

Individual treatment selection for patients with post-traumatic stress disorder: External validation of a personalised advantage index.

作者信息

Tait James, Kellett Stephen, Saxon David, Deisenhofer Anne-Katharina, Lutz Wolfgang, Barkham Michael, Delgadillo Jaime

机构信息

School of Psychology, University of Sheffield, ICOSS Building, 219 Portobello, Sheffield, S1 4DP, United Kingdom.

Grounded Research, RDaSH NHS Foundation Trust, Doncaster, United Kingdom.

出版信息

Psychother Res. 2024 Jun 11:1-14. doi: 10.1080/10503307.2024.2360449.

Abstract

OBJECTIVE

To test the predictive accuracy and generalisability of a personalised advantage index (PAI) model designed to support treatment selection for Post-Traumatic Stress Disorder (PTSD).

METHOD

A PAI model developed by Deisenhofer et al. (2018) was used to predict treatment outcomes in a statistically independent dataset including archival records for = 152 patients with PTSD who accessed either trauma-focussed cognitive behavioural therapy or eye movement desensitisation and reprocessing in routine care. Outcomes were compared between patients who received their PAI-indicated optimal treatment versus those who received their suboptimal treatment.

RESULTS

The model did not yield treatment specific predictions and patients who had received their PAI-indicated optimal treatment did not have better treatment outcomes in this external validation sample.

CONCLUSION

This PAI model did not generalise to an external validation sample.

摘要

目的

测试一种个性化优势指数(PAI)模型的预测准确性和通用性,该模型旨在为创伤后应激障碍(PTSD)的治疗选择提供支持。

方法

使用Deisenhofer等人(2018年)开发的PAI模型,在一个统计独立的数据集中预测治疗结果,该数据集包括152名PTSD患者的档案记录,这些患者在常规护理中接受了以创伤为重点的认知行为疗法或眼动脱敏再处理疗法。比较接受PAI指示的最佳治疗的患者与接受次优治疗的患者的结果。

结果

该模型没有产生特定于治疗的预测,并且在这个外部验证样本中,接受PAI指示的最佳治疗的患者没有更好的治疗结果。

结论

这个PAI模型不能推广到外部验证样本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验