School of Zhang Jian, Nantong University, Nantong, China.
College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, China.
Aging (Albany NY). 2024 Jun 10;16(11):10004-10015. doi: 10.18632/aging.205913.
A neurodevelopmental illness termed as the autism spectrum disorder (ASD) is described by social interaction impairments. Previous studies employing resting-state functional imaging (rs-fMRI) identified both hyperconnectivity and hypoconnectivity patterns in ASD people. However, specific patterns of connectivity within and between networks linked to ASD remain largely unexplored.
We utilized a meticulously selected subset of high-quality data, comprising 45 individuals diagnosed with ASD and 47 HCs, obtained from the ABIDE dataset. The pre-processed rs-fMRI time series signals were partitioned into ninety regions of interest. We focused on eight intrinsic connectivity networks and further performed intra- and inter-network analysis. Finally, support vector machine was used to discriminate ASD from HC.
Through different sparsities, ASD exhibited significantly decreased intra-network connectivity within default mode network and dorsal attention network, increased connectivity between limbic network and subcortical network, and decreased connectivity between default mode network and limbic network. Using the classifier trained on altered intra- and inter-network connectivity, multivariate pattern analyses classified the ASD from HC with 71.74% accuracy, 70.21% specificity and 75.56% sensitivity in 10% sparsity of functional connectivity.
ASD showed characteristic reorganization of the brain networks and this provided new insight into the underlying process of the functional connectome dysfunction in ASD.
自闭症谱系障碍(ASD)是一种神经发育疾病,其特征为社交互动障碍。先前使用静息态功能磁共振成像(rs-fMRI)的研究发现,ASD 患者存在连接过度和连接不足的模式。然而,与 ASD 相关的网络内和网络间连接的具体连接模式在很大程度上仍未得到探索。
我们从 ABIDE 数据集选择了一组精心挑选的高质量数据,其中包括 45 名 ASD 患者和 47 名 HC。对 rs-fMRI 时间序列信号进行预处理,将其分为 90 个感兴趣区域。我们专注于 8 个内在连接网络,并进一步进行了网络内和网络间分析。最后,使用支持向量机来区分 ASD 和 HC。
通过不同的稀疏性,ASD 表现为默认模式网络和背侧注意网络内的网络内连接显著降低,边缘网络和皮质下网络之间的连接增加,默认模式网络和边缘网络之间的连接减少。使用基于改变的网络内和网络间连接的分类器,多变量模式分析以 71.74%的准确率、70.21%的特异性和 75.56%的敏感度,在功能连接的 10%稀疏度下将 ASD 从 HC 中分类出来。
ASD 表现出大脑网络的特征性重组,这为 ASD 中功能连接体功能障碍的潜在过程提供了新的见解。