Suppr超能文献

基于时间序列自清洗的功能脑网络估计

Functional Brain Network Estimation With Time Series Self-Scrubbing.

出版信息

IEEE J Biomed Health Inform. 2019 Nov;23(6):2494-2504. doi: 10.1109/JBHI.2019.2893880. Epub 2019 Jan 18.

Abstract

Functional brain network (FBN) is becoming an increasingly important measurement for exploring cerebral mechanisms and mining informative biomarkers that assist diagnosis of some neurodegenerative disorders. Despite its effectiveness to discover valuable hidden patterns in the human brain, the estimated FBNs are often heavily influenced by the quality of the observed data (e.g., blood oxygen level dependent signal series). In practice, a preprocessing pipeline is usually employed for improving data quality. With this in mind, some data points (volumes or time course in the time series) are still not clean enough, due to artifacts including spurious resting-state processes (head movement, mind-wandering). Therefore, not all volumes in the fMRI time series can contribute to the subsequent FBN estimation. To address this issue, we propose a novel FBN estimation method by introducing a latent variable as an indicator of the data quality, and develop an alternating optimization algorithm for jointly scrubbing the data and estimating FBN simultaneously. To further illustrate the effectiveness of the proposed method, we conduct experiments on two public datasets to identify subjects with mild cognitive impairment from normal controls based on the estimated FBNs, and achieve improved accuracies than the baseline methods.

摘要

功能脑网络 (FBN) 正成为探索大脑机制和挖掘有价值的生物标志物的重要手段,这些标志物可以辅助诊断一些神经退行性疾病。尽管它可以有效地发现人类大脑中的有价值的隐藏模式,但估计的 FBN 通常受到观测数据质量的强烈影响(例如,血氧水平依赖信号序列)。在实践中,通常采用预处理管道来提高数据质量。考虑到这一点,由于伪静息态过程(头部运动、思维漫游)等伪影的存在,一些数据点(时间序列中的体积或时间过程)仍然不够干净。因此,并非 fMRI 时间序列中的所有体积都可以有助于后续的 FBN 估计。为了解决这个问题,我们提出了一种新的 FBN 估计方法,通过引入一个潜在变量作为数据质量的指标,并开发了一种交替优化算法,同时对数据进行清洗和 FBN 估计。为了进一步说明所提出方法的有效性,我们在两个公共数据集上进行了实验,基于估计的 FBN 从正常对照中识别出轻度认知障碍患者,并且比基线方法的准确性更高。

相似文献

1
Functional Brain Network Estimation With Time Series Self-Scrubbing.
IEEE J Biomed Health Inform. 2019 Nov;23(6):2494-2504. doi: 10.1109/JBHI.2019.2893880. Epub 2019 Jan 18.
2
Toward a Better Estimation of Functional Brain Network for Mild Cognitive Impairment Identification: A Transfer Learning View.
IEEE J Biomed Health Inform. 2020 Apr;24(4):1160-1168. doi: 10.1109/JBHI.2019.2934230. Epub 2019 Aug 9.
3
Estimating sparse functional brain networks with spatial constraints for MCI identification.
PLoS One. 2020 Jul 24;15(7):e0235039. doi: 10.1371/journal.pone.0235039. eCollection 2020.
4
Estimating Brain Functional Networks Based on Adaptively-Weighted fMRI Signals for MCI Identification.
Front Aging Neurosci. 2021 Jan 14;12:595322. doi: 10.3389/fnagi.2020.595322. eCollection 2020.
5
Estimating functional brain networks by incorporating a modularity prior.
Neuroimage. 2016 Nov 1;141:399-407. doi: 10.1016/j.neuroimage.2016.07.058. Epub 2016 Jul 30.
6
Learning Brain Functional Networks With Latent Temporal Dependency for MCI Identification.
IEEE Trans Biomed Eng. 2022 Feb;69(2):590-601. doi: 10.1109/TBME.2021.3102015. Epub 2022 Jan 20.
7
State-space model with deep learning for functional dynamics estimation in resting-state fMRI.
Neuroimage. 2016 Apr 1;129:292-307. doi: 10.1016/j.neuroimage.2016.01.005. Epub 2016 Jan 14.
8
Reduction of motion-related artifacts in resting state fMRI using aCompCor.
Neuroimage. 2014 Aug 1;96:22-35. doi: 10.1016/j.neuroimage.2014.03.028. Epub 2014 Mar 18.

引用本文的文献

2
Altered intra- and inter-network connectivity in autism spectrum disorder.
Aging (Albany NY). 2024 Jun 10;16(11):10004-10015. doi: 10.18632/aging.205913.
4
Learning to Fuse Multiple Brain Functional Networks for Automated Autism Identification.
Biology (Basel). 2023 Jul 8;12(7):971. doi: 10.3390/biology12070971.
5
The reconfiguration pattern of individual brain metabolic connectome for Parkinson's disease identification.
MedComm (2020). 2023 Jun 27;4(4):e305. doi: 10.1002/mco2.305. eCollection 2023 Aug.
6
Functional Connectivity Networks with Latent Distributions for Mild Cognitive Impairment Identification.
J Digit Imaging. 2023 Oct;36(5):2113-2124. doi: 10.1007/s10278-023-00872-3. Epub 2023 Jun 27.
8
Adaptive noise depression for functional brain network estimation.
Front Psychiatry. 2023 Jan 10;13:1100266. doi: 10.3389/fpsyt.2022.1100266. eCollection 2022.
9
A Similarity Measure-Based Approach Using RS-fMRI Data for Autism Spectrum Disorder Diagnosis.
Diagnostics (Basel). 2023 Jan 6;13(2):218. doi: 10.3390/diagnostics13020218.
10
A pairwise functional connectivity similarity measure method based on few-shot learning for early MCI detection.
Front Neurosci. 2022 Dec 19;16:1081788. doi: 10.3389/fnins.2022.1081788. eCollection 2022.

本文引用的文献

1
Remodeling Pearson's Correlation for Functional Brain Network Estimation and Autism Spectrum Disorder Identification.
Front Neuroinform. 2017 Aug 31;11:55. doi: 10.3389/fninf.2017.00055. eCollection 2017.
2
Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification.
Hum Brain Mapp. 2017 Oct;38(10):5019-5034. doi: 10.1002/hbm.23711. Epub 2017 Jun 30.
3
Correlation-Weighted Sparse Group Representation for Brain Network Construction in MCI Classification.
Med Image Comput Comput Assist Interv. 2016 Oct;9900:37-45. doi: 10.1007/978-3-319-46720-7_5. Epub 2016 Oct 2.
4
Structured Sparse Low-Rank Regression Model for Brain-Wide and Genome-Wide Associations.
Med Image Comput Comput Assist Interv. 2016 Oct;9900:344-352. doi: 10.1007/978-3-319-46720-7_40. Epub 2016 Oct 2.
5
Estimating functional brain networks by incorporating a modularity prior.
Neuroimage. 2016 Nov 1;141:399-407. doi: 10.1016/j.neuroimage.2016.07.058. Epub 2016 Jul 30.
7
Diagnosis of Autism Spectrum Disorders Using Temporally Distinct Resting-State Functional Connectivity Networks.
CNS Neurosci Ther. 2016 Mar;22(3):212-9. doi: 10.1111/cns.12499. Epub 2016 Jan 29.
8
A brain network model explaining tremor in Parkinson's disease.
Neurobiol Dis. 2016 Jan;85:49-59. doi: 10.1016/j.nbd.2015.10.009. Epub 2015 Oct 14.
9
Diagnosis of autism spectrum disorders using regional and interregional morphological features.
Hum Brain Mapp. 2014 Jul;35(7):3414-30. doi: 10.1002/hbm.22411. Epub 2013 Nov 6.
10
Functional connectomics from resting-state fMRI.
Trends Cogn Sci. 2013 Dec;17(12):666-82. doi: 10.1016/j.tics.2013.09.016. Epub 2013 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验