文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用光化学交联法在片上制备生物微凝胶的新方法。

A New Approach for On-Chip Production of Biological Microgels Using Photochemical Cross-Linking.

机构信息

Complex Fluids Research Group, Department of Chemical Engineering, School of Engineering and Applied Science, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, United Kingdom.

Centre for Materials Physics, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom.

出版信息

Anal Chem. 2024 Jun 25;96(25):10140-10144. doi: 10.1021/acs.analchem.4c01574. Epub 2024 Jun 11.


DOI:10.1021/acs.analchem.4c01574
PMID:38862384
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11209654/
Abstract

Photochemical cross-linking is a key step for manufacturing microgels in numerous applications, including drug delivery, tissue engineering, material production, and wound healing. Existing photochemical cross-linking techniques in microfluidic devices rely on UV curing, which can cause cell and DNA damage. We address this challenge by developing a microfluidic workflow for producing microgels using visible light-driven photochemical cross-linking of aqueous droplets dispersed in a continuous oil phase. We report a proof-of-concept to construct microgels from the protein Bovine Serum Albumin (BSA) with [Ru(bpy)] mediated cross-linking. By controlling the capillary number of the continuous and dispersed phases, the volumetric flow rate, and the photochemical reaction time within the microfluidic tubing, we demonstrate the construction of protein microgels with controllable and uniform dimensions. Our technique can, in principle, be applied to a wide range of different proteins with biological and responsive properties. This work therefore bridges the gap between hydrogel manufacturing using visible light and microfluidic microgel templating, facilitating numerous biomedical applications.

摘要

光化学交联是制造微凝胶的关键步骤,在药物输送、组织工程、材料生产和伤口愈合等众多应用中都有应用。现有的微流控设备中的光化学交联技术依赖于紫外光固化,这可能会导致细胞和 DNA 损伤。我们通过开发一种使用可见光照驱动的分散在连续油相中的水相液滴的光化学交联来制造微凝胶的微流控工作流程来解决这一挑战。我们报告了一个使用[Ru(bpy)]介导的交联从蛋白质牛血清白蛋白(BSA)构建微凝胶的概念验证。通过控制连续相和分散相的毛细数、体积流速和微流管内的光化学反应时间,我们展示了具有可控和均匀尺寸的蛋白质微凝胶的构建。我们的技术原则上可以应用于具有生物和响应特性的广泛的不同蛋白质。因此,这项工作在使用可见光制造水凝胶和微流控微凝胶模板之间架起了桥梁,为众多的生物医学应用提供了便利。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8dd/11209654/2c995b23af06/ac4c01574_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8dd/11209654/457c75b8caf4/ac4c01574_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8dd/11209654/9e727502bda1/ac4c01574_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8dd/11209654/2c995b23af06/ac4c01574_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8dd/11209654/457c75b8caf4/ac4c01574_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8dd/11209654/9e727502bda1/ac4c01574_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8dd/11209654/2c995b23af06/ac4c01574_0003.jpg

相似文献

[1]
A New Approach for On-Chip Production of Biological Microgels Using Photochemical Cross-Linking.

Anal Chem. 2024-6-25

[2]
Plasmonic Microgels for Raman-Based Molecular Detection Created by Simultaneous Photoreduction and Photocross-linking.

ACS Appl Mater Interfaces. 2020-10-21

[3]
Enzymatic Crosslinking of Polymer Conjugates is Superior over Ionic or UV Crosslinking for the On-Chip Production of Cell-Laden Microgels.

Macromol Biosci. 2016-10

[4]
An integrated microfluidic flow-focusing platform for on-chip fabrication and filtration of cell-laden microgels.

Lab Chip. 2019-4-23

[5]
Microfluidics-assisted fabrication of gelatin-silica core-shell microgels for injectable tissue constructs.

Biomacromolecules. 2014-1-13

[6]
Facile Microfluidic Fabrication of Biocompatible Hydrogel Microspheres in a Novel Microfluidic Device.

Molecules. 2022-6-22

[7]
Cell-laden microgel prepared using a biocompatible aqueous two-phase strategy.

Biomed Microdevices. 2017-9

[8]
Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.

Colloids Surf B Biointerfaces. 2016-7-20

[9]
A Pump-Free Strategy for the Controllable Generation of Alginate Microgels as Cellular Microcarriers.

ACS Biomater Sci Eng. 2024-6-10

[10]
Preparation and characterization of pH-responsive microgel using arabinoxylan from wheat bran for BSA delivery.

Food Chem. 2021-4-16

本文引用的文献

[1]
Applications of human and bovine serum albumins in biomedical engineering: A review.

Int J Biol Macromol. 2023-12-31

[2]
Diversity of viscoelastic properties of an engineered muscle-inspired protein hydrogel.

Soft Matter. 2023-5-3

[3]
Beating Poisson stochastic particle encapsulation in flow-focusing microfluidic devices using viscoelastic liquids.

Soft Matter. 2022-8-17

[4]
Materials and methods for droplet microfluidic device fabrication.

Lab Chip. 2022-3-1

[5]
Microgel assembly: Fabrication, characteristics and application in tissue engineering and regenerative medicine.

Bioact Mater. 2021-7-23

[6]
Zinc ions coordinated carboxymethyl chitosan-hyaluronic acid microgel for pulmonary drug delivery.

Int J Biol Macromol. 2021-12-15

[7]
Controlled viscoelastic particle encapsulation in microfluidic devices.

Soft Matter. 2021-9-15

[8]
Microgel Single-Cell Culture Arrays on a Microfluidic Chip for Selective Expansion and Recovery of Colorectal Cancer Stem Cells.

Anal Chem. 2021-9-21

[9]
Crosslinking Strategies for the Microfluidic Production of Microgels.

Molecules. 2021-6-20

[10]
Reaction Rate Governs the Viscoelasticity and Nanostructure of Folded Protein Hydrogels.

Biomacromolecules. 2020-10-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索