Suppr超能文献

在新型微流控装置中,轻松制造生物相容性水凝胶微球。

Facile Microfluidic Fabrication of Biocompatible Hydrogel Microspheres in a Novel Microfluidic Device.

机构信息

Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK.

出版信息

Molecules. 2022 Jun 22;27(13):4013. doi: 10.3390/molecules27134013.

Abstract

Poly(ethylene glycol) diacrylate (PEGDA) microgels with tuneable size and porosity find applications as extracellular matrix mimics for tissue-engineering scaffolds, biosensors, and drug carriers. Monodispersed PEGDA microgels were produced by modular droplet microfluidics using the dispersed phase with 49-99 wt% PEGDA, 1 wt% Darocur 2959, and 0-50 wt% water, while the continuous phase was 3.5 wt% silicone-based surfactant dissolved in silicone oil. Pure PEGDA droplets were fully cured within 60 s at the UV light intensity of 75 mW/cm. The droplets with higher water content required more time for curing. Due to oxygen inhibition, the polymerisation started in the droplet centre and advanced towards the edge, leading to a temporary solid core/liquid shell morphology, confirmed by tracking the Brownian motion of fluorescent latex nanoparticles within a droplet. A volumetric shrinkage during polymerisation was 1-4% for pure PEGDA droplets and 20-32% for the droplets containing 10-40 wt% water. The particle volume increased by 36-50% after swelling in deionised water. The surface smoothness and sphericity of the particles decreased with increasing water content in the dispersed phase. The porosity of swollen particles was controlled from 29.7% to 41.6% by changing the water content in the dispersed phase from 10 wt% to 40 wt%.

摘要

聚乙二醇二丙烯酸酯 (PEGDA) 微凝胶具有可调节的尺寸和孔隙率,可作为组织工程支架、生物传感器和药物载体的细胞外基质模拟物。通过使用分散相中的 49-99wt%PEGDA、1wt%Darocur 2959 和 0-50wt%水以及连续相中的 3.5wt%硅基表面活性剂溶解在硅油中,通过模块化液滴微流控技术生产单分散的 PEGDA 微凝胶。在 75mW/cm 的紫外光强度下,纯 PEGDA 液滴在 60s 内完全固化。含水量较高的液滴需要更长的时间才能固化。由于氧气抑制作用,聚合反应从液滴中心开始,并向边缘推进,导致暂时的固核/液壳形态,这通过跟踪荧光乳胶纳米颗粒在液滴内的布朗运动得到证实。聚合过程中的体积收缩为纯 PEGDA 液滴的 1-4%,以及含有 10-40wt%水的液滴的 20-32%。在去离子水中溶胀后,颗粒体积增加了 36-50%。随着分散相中水含量的增加,颗粒的表面光滑度和球形度降低。通过改变分散相中的水含量从 10wt%到 40wt%,可控制溶胀颗粒的孔隙率从 29.7%到 41.6%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b6a/9268728/521d9f52c3fa/molecules-27-04013-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验