Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, No.36, Lushan Road, Changsha 410081, China.
Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The Netherlands.
Anal Chem. 2024 Jun 25;96(25):10170-10181. doi: 10.1021/acs.analchem.3c05879. Epub 2024 Jun 11.
The diversity of cannabinoid isomers and complexity of Cannabis products pose significant challenges for analytical methodologies. In this study, we developed a method to analyze 14 different cannabinoid isomers in diverse samples within milliseconds by leveraging the unique adduct-forming behavior of silver ions in advanced cyclic ion mobility spectrometry-mass spectrometry. The developed method achieved the separation of isomers from four groups of cannabinoids: Δ3-tetrahydrocannabinol (THC) (), Δ8-THC (), Δ9-THC (), cannabidiol (CBD) (), Δ8-iso-THC (), and Δ(4)8-iso-THC () (all MW = 314); 9α-hydroxyhexahydrocannabinol (), 9β-hydroxyhexahydrocannabinol (), and 8-hydroxy-iso-THC () (all MW = 332); tetrahydrocannabinolic acid (THCA) () and cannabidiolic acid (CBDA) () (both MW = 358); Δ8-tetrahydrocannabivarin (THCV) (), Δ8-iso-THCV (), and Δ9-THCV () (all MW = 286). Moreover, experimental and theoretical traveling wave collision cross section values in nitrogen (CCS) of cannabinoid-Ag(I) species were obtained for the first time with an average error between experimental and theoretical values of 2.6%. Furthermore, a workflow for the identification of cannabinoid isomers in Cannabis and Cannabis-derived samples was established based on three identification steps (/ and isotope pattern of Ag(I) adducts, CCS, and MS/MS fragments). Afterward, calibration curves of three major cannabinoids were established with a linear range of 1-250 ng·ml for Δ8-THC () ( = 0.9999), 0.1-25 ng·ml for Δ9-THC () ( = 0.9987), and 0.04-10 ng·ml for CBD () ( = 0.9986) as well as very low limits of detection (0.008-0.2 ng·ml). Finally, relative quantification of Δ8-THC (), Δ9-THC (), and CBD () in eight complex acid-treated CBD mixtures was achieved without chromatographic separation. The results showed good correspondence ( = 0.999) with those obtained by gas chromatography-flame ionization detection/mass spectrometry.
大麻素异构体的多样性和大麻素产品的复杂性给分析方法带来了重大挑战。在这项研究中,我们利用银离子在先进的循环离子淌度质谱中的独特加合物形成行为,开发了一种在毫秒内分析不同样品中 14 种不同大麻素异构体的方法。该方法实现了从四组大麻素异构体的分离:Δ3-四氢大麻酚(THC)()、Δ8-THC()、Δ9-THC()、大麻二酚(CBD)()、Δ8-异-THC()和 Δ(4)8-异-THC()(所有 MW = 314);9α-羟基六氢大麻酚()、9β-羟基六氢大麻酚()和 8-羟基-异-THC()(所有 MW = 332);四氢大麻酸(THCA)()和大麻二酚酸(CBDA)()(两者 MW = 358);Δ8-四氢大麻素(THCV)()、Δ8-异-THCV()和 Δ9-THCV()(均 MW = 286)。此外,首次获得了大麻素-Ag(I)物质在氮气中的实验和理论行进波碰撞截面值(CCS),实验值和理论值之间的平均误差为 2.6%。此外,基于三个鉴定步骤(Ag(I)加合物的和同位素模式、CCS 和 MS/MS 碎片),建立了大麻素异构体在大麻和大麻衍生样品中的鉴定工作流程。随后,建立了三种主要大麻素的校准曲线,Δ8-THC()的线性范围为 1-250 ng·ml(= 0.9999),Δ9-THC()的线性范围为 0.1-25 ng·ml(= 0.9987),CBD()的线性范围为 0.04-10 ng·ml(= 0.9986),检出限非常低(0.008-0.2 ng·ml)。最后,在无需色谱分离的情况下,实现了 8 种复杂酸处理 CBD 混合物中 Δ8-THC()、Δ9-THC()和 CBD()的相对定量。结果与气相色谱-火焰离子化检测/质谱法获得的结果具有很好的一致性(= 0.999)。