Cleland Agnetta Y, Wollack E Alex, Safavi-Naeini Amir H
Department of Applied Physics and Ginzton Laboratory, Stanford University 348 Via Pueblo Mall, Stanford, CA, 94305, USA.
Nat Commun. 2024 Jun 11;15(1):4979. doi: 10.1038/s41467-024-48306-0.
Nanomechanical oscillators offer numerous advantages for quantum technologies. Their integration with superconducting qubits shows promise for hardware-efficient quantum error-correction protocols involving superpositions of mechanical coherent states. Limitations of this approach include mechanical decoherence processes, particularly two-level system (TLS) defects, which have been widely studied using classical fields and detectors. In this manuscript, we use a superconducting qubit as a quantum sensor to perform phonon number-resolved measurements on a piezoelectrically coupled phononic crystal cavity. This enables a high-resolution study of mechanical dissipation and dephasing in coherent states of variable size ( phonons). We observe nonexponential relaxation and state size-dependent reduction of the dephasing rate, which we attribute to TLS. Using a numerical model, we reproduce the dissipation signatures (and to a lesser extent, the dephasing signatures) via emission into a small ensemble (N = 5) of rapidly dephasing TLS. Our findings comprise a detailed examination of TLS-induced phonon decoherence in the quantum regime.
纳米机械振荡器为量子技术提供了众多优势。它们与超导量子比特的集成对于涉及机械相干态叠加的硬件高效量子纠错协议显示出前景。这种方法的局限性包括机械退相干过程,特别是两能级系统(TLS)缺陷,人们已经使用经典场和探测器对其进行了广泛研究。在本论文中,我们使用超导量子比特作为量子传感器,对压电耦合声子晶体腔进行声子数分辨测量。这使得我们能够对可变尺寸( 声子)的相干态中的机械耗散和退相进行高分辨率研究。我们观察到非指数弛豫以及退相速率随态尺寸的减小,我们将其归因于TLS。使用数值模型,我们通过向一小群(N = 5)快速退相的TLS发射来重现耗散特征(以及在较小程度上的退相特征)。我们的研究结果包括对量子 regime中TLS诱导的声子退相干的详细研究。