Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125, USA.
Institute for Quantum Information and Matter and Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
Science. 2020 Nov 13;370(6518):840-843. doi: 10.1126/science.abc7312.
The energy damping time in a mechanical resonator is critical to many precision metrology applications, such as timekeeping and force measurements. We present measurements of the phonon lifetime of a microwave-frequency, nanoscale silicon acoustic cavity incorporating a phononic bandgap acoustic shield. Using pulsed laser light to excite a colocalized optical mode of the cavity, we measured the internal acoustic modes with single-phonon sensitivity down to millikelvin temperatures, yielding a phonon lifetime of up to [Formula: see text] seconds (quality factor [Formula: see text]) and a coherence time of [Formula: see text] microseconds for bandgap-shielded cavities. These acoustically engineered nanoscale structures provide a window into the material origins of quantum noise and have potential applications ranging from tests of various collapse models of quantum mechanics to miniature quantum memory elements in hybrid superconducting quantum circuits.
机械谐振器中的能量阻尼时间对于许多精密测量应用至关重要,例如计时和力测量。我们展示了对包含声子带隙声屏蔽的微波频率纳米硅声波腔的声子寿命的测量。通过使用脉冲激光光来激发腔的共定位光学模式,我们以单声子灵敏度测量了内部声波模式,其温度低至毫开尔文,从而产生了长达[Formula: see text]秒的声子寿命(品质因数[Formula: see text]),以及带隙屏蔽腔的[Formula: see text]微秒的相干时间。这些经过声学设计的纳米结构为研究量子噪声的材料起源提供了一个窗口,并且具有从各种量子力学坍缩模型的测试到混合超导量子电路中的微型量子存储元件等潜在应用。