Wu Juan-Ni, Wang Tong, Chen Yue, Tang Li-Juan, Wu Hai-Long, Yu Ru-Qin
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
Nat Commun. 2024 Jun 11;15(1):4993. doi: 10.1038/s41467-024-49388-6.
Effective representation of molecules is a crucial factor affecting the performance of artificial intelligence models. This study introduces a flexible, fragment-based, multiscale molecular representation framework called t-SMILES (tree-based SMILES) with three code algorithms: TSSA (t-SMILES with shared atom), TSDY (t-SMILES with dummy atom but without ID) and TSID (t-SMILES with ID and dummy atom). It describes molecules using SMILES-type strings obtained by performing a breadth-first search on a full binary tree formed from a fragmented molecular graph. Systematic evaluations using JTVAE, BRICS, MMPA, and Scaffold show the feasibility of constructing a multi-code molecular description system, where various descriptions complement each other, enhancing the overall performance. In addition, it can avoid overfitting and achieve higher novelty scores while maintaining reasonable similarity on labeled low-resource datasets, regardless of whether the model is original, data-augmented, or pre-trained then fine-tuned. Furthermore, it significantly outperforms classical SMILES, DeepSMILES, SELFIES and baseline models in goal-directed tasks. And it surpasses state-of-the-art fragment, graph and SMILES based approaches on ChEMBL, Zinc, and QM9.
分子的有效表示是影响人工智能模型性能的关键因素。本研究引入了一种灵活的、基于片段的多尺度分子表示框架,称为t-SMILES(基于树的SMILES),它具有三种编码算法:TSSA(具有共享原子的t-SMILES)、TSDY(具有虚拟原子但无ID的t-SMILES)和TSID(具有ID和虚拟原子的t-SMILES)。它使用通过对由碎片化分子图形成的完全二叉树进行广度优先搜索而获得的SMILES类型字符串来描述分子。使用JTVAE、BRICS、MMPA和Scaffold进行的系统评估表明构建多编码分子描述系统的可行性,其中各种描述相互补充,提高了整体性能。此外,它可以避免过拟合,并在标记的低资源数据集上保持合理相似性的同时获得更高的新颖性分数,无论模型是原始的、数据增强的还是预训练后微调的。此外,在目标导向任务中,它显著优于经典的SMILES、DeepSMILES、SELFIES和基线模型。并且在ChEMBL、Zinc和QM9上,它超越了基于片段、图和SMILES的最新方法。