文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

ABBV-744通过调节BATF2-IRF4-STAT1/3/5轴减轻脂多糖诱导的神经炎症。

ABBV-744 alleviates LPS-induced neuroinflammation via regulation of BATF2-IRF4-STAT1/3/5 axis.

作者信息

Wang Le-le, Wang Huan, Lin Si-Jin, Xu Xing-Yu, Hu Wen-Juan, Liu Jia, Zhang Hai-Yan

机构信息

University of Chinese Academy of Sciences, Beijing, 100049, China.

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.

出版信息

Acta Pharmacol Sin. 2024 Oct;45(10):2077-2091. doi: 10.1038/s41401-024-01318-4. Epub 2024 Jun 11.


DOI:10.1038/s41401-024-01318-4
PMID:38862817
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11420366/
Abstract

Suppression of neuroinflammation using small molecule compounds targeting the key pathways in microglial inflammation has attracted great interest. Recently, increasing attention has been gained to the role of the second bromodomain (BD2) of the bromodomain and extra-terminal (BET) proteins, while its effect and molecular mechanism on microglial inflammation has not yet been explored. In this study, we evaluated the therapeutic effects of ABBV-744, a BD2 high selective BET inhibitor, on lipopolysaccharide (LPS)-induced microglial inflammation in vitro and in vivo, and explored the key pathways by which ABBV-744 regulated microglia-mediated neuroinflammation. We found that pretreatment of ABBV-744 concentration-dependently inhibited the expression of LPS-induced inflammatory mediators/enzymes including NO, TNF-α, IL-1β, IL-6, iNOS, and COX-2 in BV-2 microglial cells. These effects were validated in LPS-treated primary microglial cells. Furthermore, we observed that administration of ABBV-744 significantly alleviated LPS-induced activation of microglia and transcriptional levels of pro-inflammatory factors TNF-α and IL-1β in mouse hippocampus and cortex. RNA-Sequencing (RNA-seq) analysis revealed that ABBV-744 induced 508 differentially expressed genes (DEGs) in LPS-stimulated BV-2 cells, and gene enrichment and gene expression network analysis verified its regulation on activated microglial genes and inflammatory pathways. We demonstrated that pretreatment of ABBV-744 significantly reduced the expression levels of basic leucine zipper ATF-like transcription factor 2 (BATF2) and interferon regulatory factor 4 (IRF4), and suppressed JAK-STAT signaling pathway in LPS-stimulated BV-2 cells and mice, suggesting that the anti-neuroinflammatory effect of ABBV-744 might be associated with regulation of BATF2-IRF4-STAT1/3/5 pathway, which was confirmed by gene knockdown experiments. This study demonstrates the effect of a BD2 high selective BET inhibitor, ABBV-744, against microglial inflammation, and reveals a BATF2-IRF4-STAT1/3/5 pathway in regulation of microglial inflammation, which might provide new clues for discovery of effective therapeutic strategy against neuroinflammation.

摘要

使用靶向小胶质细胞炎症关键途径的小分子化合物抑制神经炎症已引起了极大关注。最近,溴结构域和额外末端(BET)蛋白的第二个溴结构域(BD2)的作用越来越受到关注,但其对小胶质细胞炎症的影响及分子机制尚未得到探索。在本研究中,我们评估了BD2高选择性BET抑制剂ABBV-744对体外和体内脂多糖(LPS)诱导的小胶质细胞炎症的治疗作用,并探索了ABBV-744调节小胶质细胞介导的神经炎症的关键途径。我们发现,ABBV-744预处理以浓度依赖的方式抑制LPS诱导的BV-2小胶质细胞中炎症介质/酶的表达,包括NO、TNF-α、IL-1β、IL-6、iNOS和COX-2。这些作用在LPS处理的原代小胶质细胞中得到了验证。此外,我们观察到给予ABBV-744可显著减轻LPS诱导的小鼠海马体和皮质中小胶质细胞的激活以及促炎因子TNF-α和IL-1β的转录水平。RNA测序(RNA-seq)分析显示,ABBV-744在LPS刺激的BV-2细胞中诱导了508个差异表达基因(DEG),基因富集和基因表达网络分析证实了其对活化小胶质细胞基因和炎症途径的调节作用。我们证明,ABBV-744预处理显著降低了碱性亮氨酸拉链ATF样转录因子2(BATF2)和干扰素调节因子4(IRF4)的表达水平,并抑制了LPS刺激的BV-2细胞和小鼠中的JAK-STAT信号通路,表明ABBV-744的抗神经炎症作用可能与BATF2-IRF4-STAT1/3/5途径的调节有关,基因敲低实验证实了这一点。本研究证明了BD2高选择性BET抑制剂ABBV-744对小胶质细胞炎症的作用,并揭示了调节小胶质细胞炎症的BATF2-IRF4-STAT1/3/5途径,这可能为发现有效的抗神经炎症治疗策略提供新线索。

相似文献

[1]
ABBV-744 alleviates LPS-induced neuroinflammation via regulation of BATF2-IRF4-STAT1/3/5 axis.

Acta Pharmacol Sin. 2024-10

[2]
Administration of 2-deoxy-D-glucose alleviates cancer-induced bone pain by suppressing microglial polarization to the M1 phenotype and neuroinflammation.

Mol Pain. 2025

[3]
Hydroxysafflor yellow A attenuates the inflammatory response in cerebral ischemia-reperfusion injured mice by regulating microglia polarization per SIRT1-mediated HMGB1/NF-κB signaling pathway.

Int Immunopharmacol. 2025-2-6

[4]
THSG counteracts microglial glycolytic reprogramming and neuronal necroptosis both in vivo and in vitro under conditions of neuroinflammation.

Sci Rep. 2025-7-1

[5]
Luteolin ameliorates chronic stress-induced depressive-like behaviors in mice by promoting the Arginase-1 microglial phenotype via a PPARγ-dependent mechanism.

Acta Pharmacol Sin. 2025-3

[6]
EphB2-mediated ephrin-B reverse signaling on microglia drives an anti-viral, but inflammatory and neurotoxic response associated with HIV.

J Neuroinflammation. 2025-6-30

[7]
Inosine Treatment Attenuates White Matter Injury in Neonatal Rats Exposed to Maternal Inflammation.

Neurochem Res. 2025-5-30

[8]
Poliumoside alleviates microglia-mediated inflammation and blood-brain barrier disruption via modulating the polarization of microglia after ischemic stroke in mice.

Phytomedicine. 2025-7-25

[9]
FPS-ZM1 inhibits LPS-induced microglial inflammation by suppressing JAK/STAT signaling pathway.

Int Immunopharmacol. 2021-11

[10]
Alleviation of lipopolysaccharide-induced heart inflammation in poultry treated with carnosic acid via the NF-κB and MAPK pathways.

J Anim Sci. 2025-1-4

引用本文的文献

[1]
Enhancer Profiling Reveals a Protective Role of RXRα Against Calcium Oxalate-Induced Crystal Deposition and Kidney Injury.

Adv Sci (Weinh). 2025-6

[2]
STAT1 mediates the pro-inflammatory role of GBP5 in colitis.

Commun Biol. 2025-3-7

[3]
Design, synthesis, and anti-inflammatory activity of 2H-1,4-benzoxazin-3(4H)-one derivatives modified with 1,2,3-triazole in LPS-induced BV-2 cells.

Front Pharmacol. 2025-1-20

本文引用的文献

[1]
TRIM45 aggravates microglia pyroptosis via Atg5/NLRP3 axis in septic encephalopathy.

J Neuroinflammation. 2023-11-30

[2]
Selective BET inhibitor RVX-208 ameliorates periodontal inflammation and bone loss.

J Clin Periodontol. 2023-12

[3]
Microglia-derived CCL20 deteriorates neurogenesis following intraventricular hemorrhage.

Exp Neurol. 2023-12

[4]
Tofacitinib Promotes Functional Recovery after Spinal Cord Injury by Regulating Microglial Polarization via JAK/STAT Signaling Pathway.

Int J Biol Sci. 2023

[5]
Inhibition of neutrophil extracellular trap formation ameliorates neuroinflammation and neuronal apoptosis via STING-dependent IRE1α/ASK1/JNK signaling pathway in mice with traumatic brain injury.

J Neuroinflammation. 2023-9-30

[6]
ABBV-744 induces autophagy in gastric cancer cells by regulating PI3K/AKT/mTOR/p70S6k and MAPK signaling pathways.

Neoplasia. 2023-11

[7]
Crebanine ameliorates ischemia-reperfusion brain damage by inhibiting oxidative stress and neuroinflammation mediated by NADPH oxidase 2 in microglia.

Phytomedicine. 2023-11

[8]
BRD4 Inhibition as a Strategy to Prolong the Response to Standard of Care in Estrogen Receptor-Positive Breast Cancer.

Cancers (Basel). 2023-8-11

[9]
Discovery of a Bromodomain and Extra Terminal Domain (BET) Inhibitor with the Selectivity for the Second Bromodomain (BD2) and the Capacity for the Treatment of Inflammatory Diseases.

J Med Chem. 2023-8-10

[10]
Minocycline and antipsychotics inhibit inflammatory responses in BV-2 microglia activated by LPS via regulating the MAPKs/ JAK-STAT signaling pathway.

BMC Psychiatry. 2023-7-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索