Suppr超能文献

人工智能在自动化锥形束计算机断层扫描衍生上颌窦成像任务中的应用。系统综述。

Emergence of artificial intelligence for automating cone-beam computed tomography-derived maxillary sinus imaging tasks. A systematic review.

机构信息

King Abdullah International Medical Research Center, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia.

OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.

出版信息

Clin Implant Dent Relat Res. 2024 Oct;26(5):899-912. doi: 10.1111/cid.13352. Epub 2024 Jun 11.

Abstract

Cone-beam computed tomography (CBCT) imaging of the maxillary sinus is indispensable for implantologists, offering three-dimensional anatomical visualization, morphological variation detection, and abnormality identification, all critical for diagnostics and treatment planning in digital implant workflows. The following systematic review presented the current evidence pertaining to the use of artificial intelligence (AI) for CBCT-derived maxillary sinus imaging tasks. An electronic search was conducted on PubMed, Web of Science, and Cochrane up until January 2024. Based on the eligibility criteria, 14 articles were included that reported on the use of AI for the automation of CBCT-derived maxillary sinus assessment tasks. The QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2) tool was used to evaluate the risk of bias and applicability concerns. The AI models used were designed to automate tasks such as segmentation, classification, and prediction. Most studies related to automated maxillary sinus segmentation demonstrated high performance. In terms of classification tasks, the highest accuracy was observed for diagnosing sinusitis (99.7%), whereas the lowest accuracy was detected for classifying abnormalities such as fungal balls and chronic rhinosinusitis (83.0%). Regarding implant treatment planning, the classification of automated surgical plans for maxillary sinus floor augmentation based on residual bone height showed high accuracy (97%). Additionally, AI demonstrated high performance in predicting gender and sinus volume. In conclusion, although AI shows promising potential in automating maxillary sinus imaging tasks which could be useful for diagnostic and planning tasks in implantology, there is a need for more diverse datasets to improve the generalizability and clinical relevance of AI models. Future studies are suggested to focus on expanding the datasets, making the AI model's source available, and adhering to standardized AI reporting guidelines.

摘要

锥形束计算机断层扫描(CBCT)对上颌窦的成像对于种植体医生来说是不可或缺的,它提供了三维解剖可视化、形态变异检测和异常识别,这些对于数字种植体工作流程中的诊断和治疗计划都至关重要。本系统评价介绍了当前关于人工智能(AI)在 CBCT 衍生上颌窦成像任务中的应用证据。我们在 PubMed、Web of Science 和 Cochrane 上进行了电子检索,截至 2024 年 1 月。根据纳入标准,有 14 篇文章报道了 AI 在 CBCT 衍生上颌窦评估任务自动化中的应用。使用 QUADAS-2(诊断准确性研究的质量评估 2)工具评估偏倚风险和适用性问题。所使用的 AI 模型旨在自动化分割、分类和预测等任务。大多数与自动上颌窦分割相关的研究显示出了较高的性能。在分类任务中,诊断鼻窦炎的准确率最高(99.7%),而真菌球和慢性鼻-鼻窦炎等异常分类的准确率最低(83.0%)。在种植体治疗计划方面,基于剩余骨高度对上颌窦底提升的自动手术计划进行分类的准确率较高(97%)。此外,AI 在预测性别和窦腔容积方面也表现出了较高的性能。总之,尽管 AI 在自动化上颌窦成像任务方面显示出了有前景的潜力,这可能对种植学中的诊断和计划任务有用,但仍需要更多多样化的数据集来提高 AI 模型的泛化能力和临床相关性。建议未来的研究集中在扩大数据集、开放 AI 模型的源代码,并遵守标准化的 AI 报告指南。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验