文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

优化具有解剖学和电生理学细节的啮齿动物丘脑底核神经元模型。

Optimization of an anatomically and electrically detailed rodent subthalamic nucleus neuron model.

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States.

Department of Neurosurgery, Duke University, Durham, North Carolina, United States.

出版信息

J Neurophysiol. 2024 Jul 1;132(1):136-146. doi: 10.1152/jn.00287.2023. Epub 2024 Jun 12.


DOI:10.1152/jn.00287.2023
PMID:38863430
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11383608/
Abstract

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for Parkinson's disease, but its mechanisms of action remain unclear. Detailed multicompartment computational models of STN neurons are often used to study how DBS electric fields modulate the neurons. However, currently available STN neuron models have some limitations in their biophysical realism. In turn, the goal of this study was to update a detailed rodent STN neuron model originally developed by Gillies and Willshaw in 2006. Our design requirements consisted of explicitly representing an axon connected to the neuron and updating the ion channel distributions based on the experimental literature to match established electrophysiological features of rodent STN neurons. We found that adding an axon to the STN neuron model substantially altered its firing characteristics. We then used a genetic algorithm to optimize biophysical parameters of the model. The updated model exhibited spontaneous firing, action potential shape, hyperpolarization response, and frequency-current curve that aligned well with experimental recordings from STN neurons. Subsequently, we evaluated the general compatibility of the updated biophysics by applying them to 26 different STN neuron morphologies derived from three-dimensional anatomical reconstructions. The different morphologies affected the firing behavior of the model, but the updated biophysics were robustly capable of maintaining the desired electrophysiological features. The new STN neuron model developed in this work offers a valuable tool for studying STN neuron firing properties and may find application in simulating STN local field potentials and analyzing the effects of STN DBS. This study presents an anatomically and biophysically realistic rodent STN neuron model. The work showcases the use of a genetic algorithm to optimize the model parameters. We noted a substantial influence of the axon on the electrophysiological characteristics of STN neurons. The updated model offers a valuable tool to investigate the firing of STN neurons and their modulation by intrinsic and/or extrinsic factors.

摘要

深部脑刺激(DBS)丘脑底核(STN)是治疗帕金森病的有效方法,但作用机制仍不清楚。详细的多室 STN 神经元计算模型通常用于研究 DBS 电场如何调节神经元。然而,目前可用的 STN 神经元模型在生物物理真实性方面存在一些局限性。反过来,这项研究的目标是更新 Gillies 和 Willshaw 于 2006 年开发的详细啮齿动物 STN 神经元模型。我们的设计要求包括明确表示与神经元相连的轴突,并根据实验文献更新离子通道分布,以匹配啮齿动物 STN 神经元的已建立电生理特征。我们发现,向 STN 神经元模型添加轴突会极大地改变其放电特性。然后,我们使用遗传算法优化模型的生物物理参数。更新后的模型表现出自发放电、动作电位形状、超极化反应和频率电流曲线,与 STN 神经元的实验记录非常吻合。随后,我们通过将更新后的生物物理学应用于从三维解剖重建中得出的 26 种不同的 STN 神经元形态,评估了更新后的生物物理学的一般兼容性。不同的形态会影响模型的放电行为,但更新后的生物物理学能够稳健地保持所需的电生理特征。这项工作中开发的新 STN 神经元模型为研究 STN 神经元放电特性提供了有价值的工具,并可能在模拟 STN 局部场电位和分析 STN DBS 的影响方面得到应用。本研究提出了一种具有解剖学和生物物理意义的啮齿动物 STN 神经元模型。该研究展示了使用遗传算法优化模型参数。我们注意到轴突对 STN 神经元电生理特征有很大影响。更新后的模型为研究 STN 神经元的放电及其被内在和/或外在因素的调制提供了有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/5243e7972267/jn.00287.2023_f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/5812214253d6/jn-00287-2023r01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/24811d3e76e7/jn.00287.2023_f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/c8b9a30ac7bb/jn.00287.2023_f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/4a94867c5b8b/jn.00287.2023_f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/0a33c4cc71f3/jn.00287.2023_f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/79abdc43d093/jn.00287.2023_f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/037ec9e41d80/jn.00287.2023_f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/aa6818a16c76/jn.00287.2023_f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/5243e7972267/jn.00287.2023_f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/5812214253d6/jn-00287-2023r01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/24811d3e76e7/jn.00287.2023_f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/c8b9a30ac7bb/jn.00287.2023_f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/4a94867c5b8b/jn.00287.2023_f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/0a33c4cc71f3/jn.00287.2023_f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/79abdc43d093/jn.00287.2023_f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/037ec9e41d80/jn.00287.2023_f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/aa6818a16c76/jn.00287.2023_f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/11383608/5243e7972267/jn.00287.2023_f008.jpg

相似文献

[1]
Optimization of an anatomically and electrically detailed rodent subthalamic nucleus neuron model.

J Neurophysiol. 2024-7-1

[2]
Model-based deconstruction of cortical evoked potentials generated by subthalamic nucleus deep brain stimulation.

J Neurophysiol. 2018-8-1

[3]
Subthalamic deep brain stimulation of an anatomically detailed model of the human hyperdirect pathway.

J Neurophysiol. 2022-5-1

[4]
Action potential initiation, propagation, and cortical invasion in the hyperdirect pathway during subthalamic deep brain stimulation.

Brain Stimul. 2018-5-12

[5]
Subthalamic deep brain stimulation alters neuronal firing in canonical pain nuclei in a 6-hydroxydopamine lesioned rat model of Parkinson's disease.

Exp Neurol. 2016-7-1

[6]
Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation.

J Neurophysiol. 2006-9

[7]
Connectivity and Dynamics Underlying Synaptic Control of the Subthalamic Nucleus.

J Neurosci. 2019-1-30

[8]
Biophysical basis of subthalamic local field potentials recorded from deep brain stimulation electrodes.

J Neurophysiol. 2018-10-1

[9]
Evaluating the impact of the deep brain stimulation induced electric field on subthalamic neurons: a computational modelling study.

J Neurosci Methods. 2010-1-29

[10]
Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations.

Brain. 2005-10

本文引用的文献

[1]
Dissecting deep brain stimulation evoked neural activity in the basal ganglia.

Neurotherapeutics. 2024-4

[2]
Model-Based Analysis of Pathway Recruitment During Subthalamic Deep Brain Stimulation.

Neuromodulation. 2024-4

[3]
Electroceutically induced subthalamic high-frequency oscillations and evoked compound activity may explain the mechanism of therapeutic stimulation in Parkinson's disease.

Commun Biol. 2021-3-23

[4]
Technology of deep brain stimulation: current status and future directions.

Nat Rev Neurol. 2021-2

[5]
Evoked potentials reveal neural circuits engaged by human deep brain stimulation.

Brain Stimul. 2020

[6]
Local field potential activity dynamics in response to deep brain stimulation of the subthalamic nucleus in Parkinson's disease.

Neurobiol Dis. 2020-9

[7]
Deep brain stimulation: current challenges and future directions.

Nat Rev Neurol. 2019-3

[8]
Subthalamic nucleus deep brain stimulation evokes resonant neural activity.

Ann Neurol. 2018-5-4

[9]
Loss of Hyperdirect Pathway Cortico-Subthalamic Inputs Following Degeneration of Midbrain Dopamine Neurons.

Neuron. 2017-9-13

[10]
Calcium-Dependent Regulation of Ion Channels.

Calcium Bind Proteins. 2006

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索