Suppr超能文献

MCCM:用于辣椒叶片疾病分类与识别的多尺度特征提取网络。

MCCM: multi-scale feature extraction network for disease classification and recognition of chili leaves.

作者信息

Li Dan, Zhang Chao, Li Jinguang, Li Mingliang, Huang Michael, Tang You

机构信息

Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, China.

School of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, China.

出版信息

Front Plant Sci. 2024 May 28;15:1367738. doi: 10.3389/fpls.2024.1367738. eCollection 2024.

Abstract

Currently, foliar diseases of chili have significantly impacted both yield and quality. Despite effective advancements in deep learning techniques for the classification of chili leaf diseases, most existing classification models still face challenges in terms of accuracy and practical application in disease identification. Therefore, in this study, an optimized and enhanced convolutional neural network model named MCCM (MCSAM-ConvNeXt-MSFFM) is proposed by introducing ConvNeXt. The model incorporates a Multi-Scale Feature Fusion Module (MSFFM) aimed at better capturing disease features of various sizes and positions within the images. Moreover, adjustments are made to the positioning, activation functions, and normalization operations of the MSFFM module to further optimize the overall model. Additionally, a proposed Mixed Channel Spatial Attention Mechanism (MCSAM) strengthens the correlation between non-local channels and spatial features, enhancing the model's extraction of fundamental characteristics of chili leaf diseases. During the training process, pre-trained weights are obtained from the Plant Village dataset using transfer learning to accelerate the model's convergence. Regarding model evaluation, the MCCM model is compared with existing CNN models (Vgg16, ResNet34, GoogLeNet, MobileNetV2, ShuffleNet, EfficientNetV2, ConvNeXt), and Swin-Transformer. The results demonstrate that the MCCM model achieves average improvements of 3.38%, 2.62%, 2.48%, and 2.53% in accuracy, precision, recall, and F1 score, respectively. Particularly noteworthy is that compared to the original ConvNeXt model, the MCCM model exhibits significant enhancements across all performance metrics. Furthermore, classification experiments conducted on rice and maize disease datasets showcase the MCCM model's strong generalization performance. Finally, in terms of application, a chili leaf disease classification website is successfully developed using the Flask framework. This website accurately identifies uploaded chili leaf disease images, demonstrating the practical utility of the model.

摘要

目前,辣椒叶部病害对产量和品质都产生了重大影响。尽管深度学习技术在辣椒叶部病害分类方面取得了有效进展,但大多数现有分类模型在准确性和病害识别的实际应用方面仍面临挑战。因此,在本研究中,通过引入ConvNeXt提出了一种优化增强的卷积神经网络模型,即MCCM(MCSAM-ConvNeXt-MSFFM)。该模型包含一个多尺度特征融合模块(MSFFM),旨在更好地捕捉图像中不同大小和位置的病害特征。此外,对MSFFM模块的定位、激活函数和归一化操作进行了调整,以进一步优化整体模型。此外,提出的混合通道空间注意力机制(MCSAM)加强了非局部通道与空间特征之间的相关性,增强了模型对辣椒叶部病害基本特征的提取能力。在训练过程中,使用迁移学习从植物村数据集获得预训练权重,以加速模型的收敛。在模型评估方面,将MCCM模型与现有的卷积神经网络模型(Vgg16、ResNet34、GoogLeNet、MobileNetV2、ShuffleNet、EfficientNetV2、ConvNeXt)以及Swin-Transformer进行了比较。结果表明,MCCM模型在准确率、精确率、召回率和F1分数方面分别平均提高了3.38%、2.62%、2.48%和2.53%。特别值得注意的是,与原始的ConvNeXt模型相比,MCCM模型在所有性能指标上都有显著提升。此外,在水稻和玉米病害数据集上进行的分类实验展示了MCCM模型强大的泛化性能。最后,在应用方面,使用Flask框架成功开发了一个辣椒叶部病害分类网站。该网站能够准确识别上传的辣椒叶部病害图像,证明了该模型的实际应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e699/11165206/c56b174ed15f/fpls-15-1367738-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验