Suppr超能文献

Transformer 引导的自适网络用于多尺度皮肤病变图像分割。

Transformer guided self-adaptive network for multi-scale skin lesion image segmentation.

机构信息

The First Affiliated Hospital of Ningbo University, Ningbo, 315211, China.

Ant Group, 310099, China.

出版信息

Comput Biol Med. 2024 Feb;169:107846. doi: 10.1016/j.compbiomed.2023.107846. Epub 2023 Dec 23.

Abstract

BACKGROUND

In recent years, skin lesion has become a major public health concern, and the diagnosis and management of skin lesions depend heavily on the correct segmentation of the lesions. Traditional convolutional neural networks (CNNs) have demonstrated promising results in skin lesion segmentation, but they are limited in their ability to capture distant connections and intricate features. In addition, current medical image segmentation algorithms rarely consider the distribution of different categories in different regions of the image and do not consider the spatial relationship between pixels.

OBJECTIVES

This study proposes a self-adaptive position-aware skin lesion segmentation model SapFormer to capture global context and fine-grained detail, better capture spatial relationships, and adapt to different positional characteristics. The SapFormer is a multi-scale dynamic position-aware structure designed to provide a more flexible representation of the relationships between skin lesion characteristics and lesion distribution. Additionally, it increases skin lesion segmentation accuracy and decreases incorrect segmentation of non-lesion areas.

INNOVATIONS

SapFormer designs multiple hybrid transformers for multi-scale feature encoding of skin images and multi-scale positional feature sensing of the encoded features using a transformer decoder to obtain fine-grained features of the lesion area and optimize the regional feature distribution. The self-adaptive feature framework, built upon the transformer decoder module, dynamically and automatically generates parameterizations with learnable properties at different positions. These parameterizations are derived from the multi-scale encoding characteristics of the input image. Simultaneously, this paper utilizes the cross-attention network to optimize the features of the current region according to the features of other regions, aiming to increase skin lesion segmentation accuracy.

MAIN RESULTS

The ISIC-2016, ISIC-2017, and ISIC-2018 datasets for skin lesions are used as the basis for the experiment. On these datasets, the proposed model has accuracy values of 97.9 %, 94.3 %, and 95.7 %, respectively. The proposed model's IOU values are, in order, 93.2 %, 86.4 %, and 89.4 %. The proposed model's DSC values are 96.4 %, 92.6 %, and 94.3 %, respectively. All three metrics surpass the performance of the majority of state-of-the-art (SOTA) models. SapFormer's metrics on these datasets demonstrate that it can precisely segment skin lesions. Notably, our approach exhibits remarkable noise resistance in non-lesion areas, while simultaneously conducting finer-grained regional feature extraction on the skin lesion image.

CONCLUSIONS

In conclusion, the integration of a transformer-guided position-aware network into semantic skin lesion segmentation results in a notable performance boost. The ability of our proposed network to capture spatial relationships and fine-grained details proves beneficial for effective skin lesion segmentation. By enhancing lesion localization, feature extraction, quantitative analysis, and classification accuracy, the proposed segmentation model improves the diagnostic efficiency of skin lesion analysis on dermoscopic images. It assists dermatologists in making more accurate and efficient diagnoses, ultimately leading to better patient care and outcomes. This research paves the way for advances in diagnosing and treating skin lesions, promoting better understanding and decision-making in the clinical setting.

摘要

背景

近年来,皮肤病变已成为一个主要的公共卫生问题,皮肤病变的诊断和管理严重依赖于对病变的正确分割。传统的卷积神经网络(CNN)在皮肤病变分割方面取得了有希望的结果,但它们在捕捉远距离连接和复杂特征方面的能力有限。此外,目前的医学图像分割算法很少考虑图像不同区域中不同类别的分布,也不考虑像素之间的空间关系。

目的

本研究提出了一种自适应位置感知皮肤病变分割模型 SapFormer,以捕获全局上下文和细粒度细节,更好地捕捉空间关系,并适应不同的位置特征。SapFormer 是一种多尺度动态位置感知结构,旨在为皮肤病变特征与病变分布之间的关系提供更灵活的表示。此外,它提高了皮肤病变分割的准确性,减少了对非病变区域的错误分割。

创新

SapFormer 为皮肤图像的多尺度特征编码和编码特征的多尺度位置特征感应设计了多个混合式变压器,使用变压器解码器获得病变区域的细粒度特征,并优化区域特征分布。自适应特征框架,基于变压器解码器模块,在不同位置动态地和自动生成具有可学习属性的参数化。这些参数化源自输入图像的多尺度编码特征。同时,本文利用交叉注意网络根据其他区域的特征来优化当前区域的特征,旨在提高皮肤病变分割的准确性。

主要结果

使用皮肤病变的 ISIC-2016、ISIC-2017 和 ISIC-2018 数据集进行实验。在这些数据集上,所提出的模型的准确率分别为 97.9%、94.3%和 95.7%。所提出的模型的 IOU 值分别为 93.2%、86.4%和 89.4%。所提出的模型的 DSC 值分别为 96.4%、92.6%和 94.3%。所有三个指标都超过了大多数最先进(SOTA)模型的性能。SapFormer 在这些数据集上的指标表明,它可以精确地分割皮肤病变。值得注意的是,我们的方法在非病变区域表现出很强的抗噪能力,同时对皮肤病变图像进行更精细的区域特征提取。

结论

总之,将基于变压器的位置感知网络集成到语义皮肤病变分割中,显著提高了性能。我们提出的网络捕捉空间关系和细粒度细节的能力有助于实现有效的皮肤病变分割。通过增强病变定位、特征提取、定量分析和分类准确性,所提出的分割模型提高了皮肤病变在皮肤镜图像上的分析诊断效率。它帮助皮肤科医生做出更准确和高效的诊断,最终改善患者的护理和结果。这项研究为皮肤病变的诊断和治疗提供了新的思路,促进了临床环境中更好的理解和决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验