Suppr超能文献

使用正电子发射断层扫描(PET)成像技术可视化大脑细胞内pH梯度的潜力。

Potential for visualization of intracellular pH gradient in the brain using PET imaging.

作者信息

Yamasaki Tomoteru, Mori Wakana, Ohkubo Takayuki, Hiraishi Atsuto, Zhang Yiding, Kurihara Yusuke, Nengaki Nobuki, Tashima Hideaki, Fujinaga Masayuki, Zhang Ming-Rong

机构信息

Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.

SHI Accelerator Service Co. Ltd., Tokyo 141-0031, Japan.

出版信息

Brain Commun. 2024 May 22;6(3):fcae172. doi: 10.1093/braincomms/fcae172. eCollection 2024.

Abstract

Intracellular pH is a valuable index for predicting neuronal damage and injury. However, no PET probe is currently available for monitoring intracellular pH . In this study, we developed a new approach for visualizing the hydrolysis rate of monoacylglycerol lipase, which is widely distributed in neurons and astrocytes throughout the brain. This approach uses PET with the new radioprobe [C]QST-0837 (1,1,1,3,3,3-hexafluoropropan-2-yl-3-(1-phenyl-1-pyrazol-3-yl)azetidine-1-[C]carboxylate), a covalent inhibitor containing an azetidine carbamate skeleton for monoacylglycerol lipase. The uptake and residence of this new radioprobe depends on the intracellular pH gradient, and we evaluated this with , and assessments. Molecular dynamics simulations predicted that because the azetidine carbamate moiety is close to that of water molecules, the compound containing azetidine carbamate would be more easily hydrolyzed following binding to monoacylglycerol lipase than would its analogue containing a piperidine carbamate skeleton. Interestingly, it was difficult for monoacylglycerol lipase to hydrolyze the azetidine carbamate compound under weakly acidic (pH 6) conditions because of a change in the interactions with water molecules on the carbamate moiety of their complex. Subsequently, an assessment using rat brain homogenate to confirm the molecular dynamics simulation-predicted behaviour of the azetidine carbamate compound showed that [C]QST-0837 reacted with monoacylglycerol lipase to yield an [C]complex, which was hydrolyzed to liberate CO as a final product. Additionally, the CO liberation rate was slower at lower pH. Finally, to indicate the feasibility of estimating how the hydrolysis rate depends on intracellular pH , we performed a PET study with [C]QST-0837 using ischaemic rats. In our proposed compartment model, the clearance rate of radioactivity from the brain reflected the rate of [C]QST-0837 hydrolysis (clearance through the production of CO) in the brain, which was lower in a remarkably hypoxic area than in the contralateral region. In conclusion, we indicated the potential for visualization of the intracellular pH gradient in the brain using PET imaging, although some limitations remain. This approach should permit further elucidation of the pathological mechanisms involved under acidic conditions in multiple CNS disorders.

摘要

细胞内pH值是预测神经元损伤的一个重要指标。然而,目前尚无用于监测细胞内pH值的正电子发射断层扫描(PET)探针。在本研究中,我们开发了一种新方法来可视化单酰基甘油脂肪酶的水解速率,该酶广泛分布于全脑的神经元和星形胶质细胞中。这种方法使用PET与新型放射性探针[C]QST - 0837(1,1,1,3,3,3 - 六氟丙烷 - 2 - 基 - 3 - (1 - 苯基 - 1 - 吡唑 - 3 - 基)氮杂环丁烷 - 1 - [C]羧酸盐),一种含有用于单酰基甘油脂肪酶的氮杂环丁烷氨基甲酸酯骨架的共价抑制剂。这种新型放射性探针的摄取和滞留取决于细胞内pH梯度,我们通过[具体实验方法1]、[具体实验方法2]和[具体实验方法3]评估对此进行了研究。分子动力学模拟预测,由于氮杂环丁烷氨基甲酸酯部分靠近水分子,与含有哌啶氨基甲酸酯骨架的类似物相比,含有氮杂环丁烷氨基甲酸酯的化合物在与单酰基甘油脂肪酶结合后更容易水解。有趣的是,由于其与复合物氨基甲酸酯部分水分子相互作用的变化,在弱酸性(pH 6)条件下单酰基甘油脂肪酶很难水解氮杂环丁烷氨基甲酸酯化合物。随后,使用大鼠脑匀浆进行的[具体实验方法4]评估以确认分子动力学模拟预测的氮杂环丁烷氨基甲酸酯化合物的行为,结果表明[C]QST - 0837与单酰基甘油脂肪酶反应生成[C]复合物,该复合物水解最终释放出CO。此外,在较低pH值下CO的释放速率较慢。最后,为了表明估计水解速率如何依赖于细胞内pH值的可行性,我们使用[C]QST - 0837对缺血大鼠进行了PET研究。在我们提出的[具体区室模型]中,大脑中放射性的清除率反映了大脑中[C]QST - 0837的水解速率(通过产生CO进行清除),在明显缺氧区域比在对侧区域更低。总之,我们表明了使用PET成像可视化大脑中细胞内pH梯度的潜力,尽管仍存在一些局限性。这种方法应该能够进一步阐明多种中枢神经系统疾病在酸性条件下所涉及的病理机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ff/11166174/241a121e49c3/fcae172_ga.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验