Suppr超能文献

在螺环-MeOTAD薄膜中脱除4-丁基吡啶可提高钙钛矿太阳能电池的热稳定性。

Degassing 4--Butylpyridine in the Spiro-MeOTAD Film Improves the Thermal Stability of Perovskite Solar Cells.

作者信息

Liang Xin, Ming Yong, Lee Sun-Ho, Fu Guiming, Lee Sang-Uk, Kim Tae-Il, Zhang Hui, Park Nam-Gyu

机构信息

School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.

Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, Jiangsu 211816, China.

出版信息

ACS Appl Mater Interfaces. 2024 Jun 26;16(25):32147-32159. doi: 10.1021/acsami.4c00631. Epub 2024 Jun 12.

Abstract

The organic molecular 2,2',7,7'-tetrakis(4,4'-dimethoxy-3-methyldiphenylamino)-9,9'-spirobifluorene (Spiro-MeOTAD) is known as a typical hole transport material in the development of an all-solid-state perovskite solar cell (PSC). Spiro-MeOTAD requires additives of lithium bifurflimide (LiTFSI) and 4--butylpyridine (tBP) to increase the conductivity and solubility for enhancing the photovoltaic performance of PSCs. However, those additives have an adverse effect on the thermal stability. We report on the origin of instability of additive-containing Spiro-MeOTAD at 85 °C and the methodology to solve the thermal instability. We have found that the interaction of LiTFSI with the underneath perovskite surface facilitated by diffusive tBP is responsible for thermal degradation. Degasification of tBP from the Spiro-MeOTAD film is found to be the key to achieving thermally stable PSCs, where the optimal degassing process achieves 90% of the initial power conversion efficiency (PCE) at 85 °C after 1000 h.

摘要

有机分子2,2',7,7'-四(4,4'-二甲氧基-3-甲基二苯胺基)-9,9'-螺二芴(Spiro-MeOTAD)是全固态钙钛矿太阳能电池(PSC)发展中一种典型的空穴传输材料。Spiro-MeOTAD需要双(三氟甲磺酰)亚胺锂(LiTFSI)和4-丁基吡啶(tBP)添加剂来提高导电性和溶解性,以增强PSC的光伏性能。然而,这些添加剂对热稳定性有不利影响。我们报道了含添加剂的Spiro-MeOTAD在85℃下不稳定的根源以及解决热不稳定性的方法。我们发现,扩散的tBP促进LiTFSI与下层钙钛矿表面的相互作用是热降解的原因。从Spiro-MeOTAD薄膜中脱除tBP气体是实现热稳定PSC的关键,其中最佳脱气工艺在85℃下1000小时后可达到初始功率转换效率(PCE)的90%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验