Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina.
Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, and Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Buenos Aires C1428EGA, Argentina.
Plant Physiol. 2024 Oct 1;196(2):697-710. doi: 10.1093/plphys/kiae333.
The roots of plants play multiple functions that are essential for growth and development, including anchoring to the soil as well as water and nutrient acquisition. These underground organs exhibit the plasticity to modify their root system architecture in response to environmental cues, allowing adaptation to change in water and nutrient availability. In addition, roots enter in mutualistic interactions with soil microorganisms, for example, the root nodule symbiosis (RNS) established between a limited group of plants and nitrogen-fixing soil bacteria and the arbuscular mycorrhiza symbiosis involving most land plants and fungi of the Glomeromycetes phylum. In the past 20 years, genetic approaches allowed the identification and functional characterization of genes required for the specific programs of root development, root nodule, and arbuscular mycorrhiza symbioses. These genetic studies provided evidence that the program of the RNS recruited components of the arbuscular mycorrhiza symbiosis and the root developmental programs. The execution of these programs is strongly influenced by epigenetic changes-DNA methylation and histone post-translational modifications-that alter chromatin conformation modifying the expression of key genes. In this review, we summarize recent advances that highlight how DNA methylation and histone post-translational modifications, as well as chromatin remodeling factors and long noncoding RNAs, shape the root system architecture and allow the successful establishment of both root nodule and arbuscular mycorrhiza symbioses. We anticipate that the analysis of dynamic epigenetic changes and chromatin 3D structure in specific single cells or tissue types of root organs will illuminate our understanding of how root developmental and symbiotic programs are orchestrated, opening exciting questions and new perspectives to modulate agronomical and ecological traits linked to nutrient acquisition.
植物的根具有多种功能,这些功能对于生长和发育至关重要,包括固定在土壤中以及获取水分和养分。这些地下器官具有可塑性,可以根据环境线索改变其根系结构,从而适应水分和养分供应的变化。此外,根与土壤微生物建立互利共生关系,例如,有限的植物群与固氮土壤细菌之间建立的根瘤共生(RNS),以及涉及大多数陆地植物和Glomeromycetes 门真菌的丛枝菌根共生。在过去的 20 年中,遗传方法允许鉴定和功能表征特定的根发育、根瘤和丛枝菌根共生程序所需的基因。这些遗传研究提供了证据表明,RNS 程序招募了丛枝菌根共生和根发育程序的组成部分。这些程序的执行受到表观遗传变化(DNA 甲基化和组蛋白翻译后修饰)的强烈影响,这些变化改变了染色质构象,改变了关键基因的表达。在这篇综述中,我们总结了最近的进展,这些进展强调了 DNA 甲基化和组蛋白翻译后修饰以及染色质重塑因子和长非编码 RNA 如何塑造根系结构,并允许成功建立根瘤和丛枝菌根共生。我们预计,对特定单个细胞或根器官组织类型中的动态表观遗传变化和染色质 3D 结构的分析将阐明我们对根发育和共生程序如何协调的理解,为调节与养分获取相关的农艺和生态特征开辟令人兴奋的问题和新视角。