Suppr超能文献

钙钛矿结构镍酸镧薄膜中的电化学钴掺杂用于增强聚合物太阳能电池的能量转换

Electrochemical Cobalt Doping in Perovskite-Structured Lanthanum Nickelate Thin Film Toward Energy Conversion Enhancement of Polymer Solar Cells.

作者信息

Jouybar Shirzad, Naji Leila, Mozaffari Sayed Ahmad, Sarabadani Tafreshi Saeedeh

机构信息

Department of Chemistry, AmirKabir University of Technology, 424 Hafez Avenue, P. O. Box: 15875-4413, Tehran, Iran.

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P. O. Box: 33535-111, Tehran, Iran.

出版信息

ACS Appl Mater Interfaces. 2024 Jun 26;16(25):32857-32873. doi: 10.1021/acsami.4c04669. Epub 2024 Jun 12.

Abstract

This study demonstrates that the electrochemical doping of lanthanum nickelate (LNO) with cobalt ions is a promising strategy for enhancing its physical and electrochemical properties, which are critical for energy storage and conversion devices. LNO emerges as a promising hole transport layer (HTL) in solar cells due to its stability, large band gap, and high transparency. Nevertheless, its low conductivity and improperly aligned band positions are persistent problems. Here, in a pioneering endeavor, Co-doped LNO thin films were synthesized electrochemically and applied as the HTL in polymer solar cells (PSCs). Characterization revealed the impact of Co doping on the electrochemical, structural, morphological, and optical properties of LNO thin films. Depending on the Co doping level, PSCs based on 10 mol % Co-doped LNO outperformed pure LNO, achieving a champion efficiency of 6.11% with enhanced short-circuit current density (12.84 mA cm), fill factor (68%), open-circuit voltage (0.70 V), and external quantum efficiency (82.6%). This enhancement resulted from decreased series resistance, refined surface morphology, minimized trap-assisted recombination, enhanced conductivity, increased charge carrier production, favorable energy level alignment, and improved current extraction facilitated by LNCO HTL. Moreover, the unencapsulated PSC-LNCO long-term stability notably improved and retained 86% of its initial PCE after 450 h storage in ambient air, 82% after being continuously heated to 85 °C for 300 h, and 80% after operating at maximum power point for 300 h. These findings offer a straightforward approach to enhancing PSC performance through Co doping of LNO, supported by density functional theory (DFT) calculations that validate the experimental results and confirm the improvement in optical properties and stability of PSCs as an HTL.

摘要

本研究表明,用钴离子对镍酸镧(LNO)进行电化学掺杂是一种很有前景的策略,可增强其物理和电化学性能,而这些性能对于能量存储和转换装置至关重要。由于其稳定性、大带隙和高透明度,LNO成为太阳能电池中有前景的空穴传输层(HTL)。然而,其低电导率和能带位置排列不当仍然是问题。在此,在一项开创性的工作中,通过电化学方法合成了钴掺杂的LNO薄膜,并将其用作聚合物太阳能电池(PSC)中的HTL。表征揭示了钴掺杂对LNO薄膜的电化学、结构、形态和光学性能的影响。根据钴掺杂水平,基于10 mol%钴掺杂LNO的PSC性能优于纯LNO,实现了6.11%的最佳效率,短路电流密度(12.84 mA cm)、填充因子(68%)、开路电压(0.70 V)和外量子效率(82.6%)均有所提高。这种增强源于串联电阻降低、表面形态细化、陷阱辅助复合最小化、电导率提高、电荷载流子产生增加、能级排列有利以及LNCO HTL促进的电流提取改善。此外,未封装的PSC-LNCO长期稳定性显著提高,在环境空气中储存450小时后保留了其初始PCE的86%,在连续加热至85°C 300小时后保留了82%,在最大功率点运行300小时后保留了80%。这些发现提供了一种通过对LNO进行钴掺杂来提高PSC性能的直接方法,密度泛函理论(DFT)计算支持了这一方法,该计算验证了实验结果,并证实了作为HTL的PSC的光学性能和稳定性得到了改善。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验