Shang Qiancheng, Yu Junsheng, Hu Rong, Liu Zixiong, Cheng Jiang, Li Ying, Shai Xuxia, Huo Ming-Ming, Yang Xin, Li Lu
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China.
National Research Base of Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices, Chongqing University of Arts and Sciences, Chongqing 402160, China.
ACS Appl Mater Interfaces. 2020 Mar 18;12(11):13051-13060. doi: 10.1021/acsami.9b22049. Epub 2020 Mar 9.
In this study, a novel metal oxide, lanthanum nickelate (LNO) with a perovskite structure, was introduced into a polymer solar cell (PSC) device, replacing the PEDOT:PSS hole transport layer (HTL). The results show that the LNO-based PTB7-Th:PCBM solar cell exhibits a higher circuit current density, power conversion efficiency, and stability compared with a device with PEDOT:PSS HTL. To understand the effect of LNO HTL on the performance of devices, the active layer morphology and charge transport characteristics in PSCs were systematically analyzed. The morphology of active layer was affected by the HTL, which further regulated the generation and transport processes of charge carrier in the PSC device. For the LNO HTL, an appropriate thickness (8 nm) and a small surface roughness ( = 0.7 nm) can coordinate the energy-level structure of device and improve the interface contact between the FTO electrode and PTB7-Th:PCBM active layer, promoting the charge transport performance of device. Therefore, this work provides a new consideration for the preparation of efficient, stable, and low-cost polymer solar cells.
在本研究中,一种具有钙钛矿结构的新型金属氧化物镍酸镧(LNO)被引入聚合物太阳能电池(PSC)器件中,取代了聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)空穴传输层(HTL)。结果表明,与具有PEDOT:PSS HTL的器件相比,基于LNO的PTB7-Th:PCBM太阳能电池表现出更高的电路电流密度、功率转换效率和稳定性。为了理解LNO HTL对器件性能的影响,对PSC中的活性层形态和电荷传输特性进行了系统分析。活性层的形态受HTL影响,这进一步调节了PSC器件中电荷载流子的产生和传输过程。对于LNO HTL,合适的厚度(8纳米)和较小的表面粗糙度(=0.7纳米)可以协调器件的能级结构,改善氟掺杂氧化锡(FTO)电极与PTB7-Th:PCBM活性层之间的界面接触,促进器件的电荷传输性能。因此,这项工作为制备高效、稳定且低成本的聚合物太阳能电池提供了新的思路。