Suppr超能文献

通过带隙工程和晶格畸变协同调控铌酸钠的光学性质以增强压电光催化活性

Band Gap Engineering and Lattice Distortion for Synergetic Tuning Optical Properties of NaNbO toward Enhanced Piezo-photocatalytic Activity.

作者信息

Li Li, Lu Shun, Cao Wenjun, Zhu Qingqing, Li Rui, Wei Yijun, Yang Shiliu, Wang Chunchang

机构信息

School of Chemistry and Materials Engineering, New Energy Materials and Technology Research Center, Huainan Research Center of New Carbon Energy Materials, Anhui Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan 232038, China.

Laboratory of Dielectric Functional Materials, School of Physics & Materials Science, Anhui University, Hefei 230601, China.

出版信息

Inorg Chem. 2024 Jun 24;63(25):11745-11756. doi: 10.1021/acs.inorgchem.4c01306. Epub 2024 Jun 12.

Abstract

Piezo-photocatalytic efficiency is severely constrained by the wide band gap and bad piezoelectric properties. Herein, La(MnNi)O was successfully introduced into NaNbO lattices (referred to as 0LMN, 0.05LMN, 0.10LMN, and 0.15LMN) through a water-based sol-gel method. The piezo-photocatalytic degradation ratio for Rhodamine B (RhB) is enhanced from 59.7% (0LMN) to 89.7% (0.10LMN) within 100 min, and the kinetic rate constant () is increased from 0.009 to 0.022 min. The enhanced performance is attributed to (i) the narrowed band gap (from 3.40 to 2.84 eV), which is conducive to the generation of photogenerated electrons and holes, and (ii) the enhanced piezoelectric properties, which can strengthen the piezoelectric polarization, thereby accelerating the separation of the photogenerated electrons and holes. And we also found that the synergetic effect of photocatalysis and piezocatalysis was superior to that of photocatalysis and piezocatalysis alone. This study could provide new perspectives for the reasonable construction of an efficient catalyst in the piezo-photocatalytic field.

摘要

压电光催化效率受到宽带隙和不良压电性能的严重限制。在此,通过水基溶胶-凝胶法成功地将La(MnNi)O引入到NaNbO晶格中(分别称为0LMN、0.05LMN、0.10LMN和0.15LMN)。在100分钟内,罗丹明B(RhB)的压电光催化降解率从59.7%(0LMN)提高到89.7%(0.10LMN),动力学速率常数()从0.009提高到0.022 min。性能增强归因于:(i)带隙变窄(从3.40 eV到2.84 eV),有利于光生电子和空穴的产生;(ii)压电性能增强,可增强压电极化,从而加速光生电子和空穴的分离。并且我们还发现光催化和压电催化的协同效应优于单独的光催化和压电催化。该研究可为压电光催化领域高效催化剂的合理构建提供新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验