Goswami Anshuman, Krishna Siddarth H, Gounder Rajamani, Schneider William F
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.
ACS Catal. 2024 May 14;14(11):8376-8388. doi: 10.1021/acscatal.4c01856. eCollection 2024 Jun 7.
Copper-exchanged chabazite (Cu-CHA) zeolites are the preferred catalysts for the selective catalytic reduction of NO with NH. The low temperature (473 K) SCR mechanism proceeds through a redox cycle between mobile and ammonia-solvated Cu(I) and Cu(II) complexes, as demonstrated by multiple experimental and computational investigations. The oxidation step requires two Cu(I) to migrate into the same cage to activate O and form a binuclear Cu(II)-di-oxo complex. Prior steady state and transient kinetic experiments find that the apparent rate constants for oxidation (per Cu ion) are sensitive to catalyst composition and follow nonmean-field kinetics. We develop a nonmean-field kinetic model for NO SCR that incorporates a composition-dependent Cu(I) volumetric footprint centered at anionic [AlO] tetrahedral sites on the CHA lattice. We use Bayesian optimization to parameterize a kinetic Monte Carlo model against available experimental composition-dependent SCR rates and Cu(II) fractions. We find that both rates and Cu(II) fractions of a majority of catalyst compositions can be captured by single oxidation and reduction rate constants combined with a composition-dependent Cu(I) cation footprint, highlighting the contributions of both Cu and Al densities to steady-state SCR performance of Cu-CHA. The work illustrates a pathway for extracting robust molecular insights from the kinetics of a dynamic catalytic system.
铜交换菱沸石(Cu-CHA)是用氨选择性催化还原NO的首选催化剂。低温(473K)SCR机理通过移动的和氨溶剂化的Cu(I)和Cu(II)配合物之间的氧化还原循环进行,这已被多个实验和计算研究所证实。氧化步骤需要两个Cu(I)迁移到同一个笼中以活化O并形成双核Cu(II)-双氧配合物。先前的稳态和瞬态动力学实验发现,氧化的表观速率常数(每Cu离子)对催化剂组成敏感,并遵循非平均场动力学。我们开发了一个用于NO SCR的非平均场动力学模型,该模型包含一个以CHA晶格上阴离子[AlO]四面体位置为中心的与组成有关的Cu(I)体积足迹。我们使用贝叶斯优化针对可用的实验组成依赖型SCR速率和Cu(II)分数对动力学蒙特卡罗模型进行参数化。我们发现,大多数催化剂组成的速率和Cu(II)分数都可以通过单一的氧化和还原速率常数以及与组成有关的Cu(I)阳离子足迹来捕获,突出了Cu和Al密度对Cu-CHA稳态SCR性能的贡献。这项工作说明了从动态催化系统的动力学中提取可靠分子见解的途径。