Santa-Rosario Juan Carlos, Gustafson Erik A, Sanabria Bellassai Dario E, Gustafson Phillip E, de Socarraz Mariano
CorePlus Servicios Clínicos y Patológicos; Plazoleta la Cerámica, Suite 2-6 Ave. Sánchez Vilella, Esq, PR-190, Carolina, PR 00983, USA.
J Pathol Inform. 2024 Apr 30;15:100378. doi: 10.1016/j.jpi.2024.100378. eCollection 2024 Dec.
Prostate cancer ranks as the most frequently diagnosed cancer in men in the USA, with significant mortality rates. Early detection is pivotal for optimal patient outcomes, providing increased treatment options and potentially less invasive interventions. There remain significant challenges in prostate cancer histopathology, including the potential for missed diagnoses due to pathologist variability and subjective interpretations.
To address these challenges, this study investigates the ability of artificial intelligence (AI) to enhance diagnostic accuracy. The Galen™ Prostate AI algorithm was validated on a cohort of Puerto Rican men to demonstrate its efficacy in cancer detection and Gleason grading. Subsequently, the AI algorithm was integrated into routine clinical practice during a 3-year period at a CLIA certified precision pathology laboratory.
The Galen™ Prostate AI algorithm showed a 96.7% (95% CI 95.6-97.8) specificity and a 96.6% (95% CI 93.3-98.8) sensitivity for prostate cancer detection and 82.1% specificity (95% CI 73.9-88.5) and 81.1% sensitivity (95% CI 73.7-87.2) for distinction of Gleason Grade Group 1 from Grade Group 2+. The subsequent AI integration into routine clinical use examined prostate cancer diagnoses on >122,000 slides and 9200 cases over 3 years and had an overall AI Impact ™ factor of 1.8%.
The potential of AI to be a powerful, reliable, and effective diagnostic tool for pathologists is highlighted, while the AI Impact™ in a real-world setting demonstrates the ability of AI to standardize prostate cancer diagnosis at a high level of performance across pathologists.
前列腺癌是美国男性中最常被诊断出的癌症,死亡率很高。早期检测对于实现最佳患者预后至关重要,可提供更多治疗选择并可能减少侵入性干预。前列腺癌组织病理学仍存在重大挑战,包括由于病理学家的差异和主观解读而导致漏诊的可能性。
为应对这些挑战,本研究调查了人工智能(AI)提高诊断准确性的能力。Galen™前列腺AI算法在一组波多黎各男性队列中进行了验证,以证明其在癌症检测和 Gleason分级方面的有效性。随后,该AI算法在一家CLIA认证的精密病理实验室的3年期间被整合到常规临床实践中。
Galen™前列腺AI算法在前列腺癌检测方面显示出96.7%(95%置信区间95.6 - 97.8)的特异性和96.6%(95%置信区间93.3 - 98.8)的敏感性,在区分Gleason 1级与2级以上组方面显示出82.1%的特异性(95%置信区间73.9 - 88.5)和81.1%的敏感性(95%置信区间73.7 - 87.2)。随后将AI整合到常规临床应用中,在3年期间检查了超过122,000张玻片和9200例病例,总体AI影响™因子为1.8%。
强调了AI成为病理学家强大、可靠且有效诊断工具的潜力,而在实际环境中的AI影响™表明AI能够在高水平性能上使病理学家之间的前列腺癌诊断标准化。