Grupo Oncoclinicas, Sao Paulo, Brazil.
Instituto Mario Penna, Belo Horizonte, Brazil.
J Pathol. 2021 Jun;254(2):147-158. doi: 10.1002/path.5662. Epub 2021 Apr 27.
Artificial intelligence (AI)-based systems applied to histopathology whole-slide images have the potential to improve patient care through mitigation of challenges posed by diagnostic variability, histopathology caseload, and shortage of pathologists. We sought to define the performance of an AI-based automated prostate cancer detection system, Paige Prostate, when applied to independent real-world data. The algorithm was employed to classify slides into two categories: benign (no further review needed) or suspicious (additional histologic and/or immunohistochemical analysis required). We assessed the sensitivity, specificity, positive predictive values (PPVs), and negative predictive values (NPVs) of a local pathologist, two central pathologists, and Paige Prostate in the diagnosis of 600 transrectal ultrasound-guided prostate needle core biopsy regions ('part-specimens') from 100 consecutive patients, and to ascertain the impact of Paige Prostate on diagnostic accuracy and efficiency. Paige Prostate displayed high sensitivity (0.99; CI 0.96-1.0), NPV (1.0; CI 0.98-1.0), and specificity (0.93; CI 0.90-0.96) at the part-specimen level. At the patient level, Paige Prostate displayed optimal sensitivity (1.0; CI 0.93-1.0) and NPV (1.0; CI 0.91-1.0) at a specificity of 0.78 (CI 0.64-0.89). The 27 part-specimens considered by Paige Prostate as suspicious, whose final diagnosis was benign, were found to comprise atrophy (n = 14), atrophy and apical prostate tissue (n = 1), apical/benign prostate tissue (n = 9), adenosis (n = 2), and post-atrophic hyperplasia (n = 1). Paige Prostate resulted in the identification of four additional patients whose diagnoses were upgraded from benign/suspicious to malignant. Additionally, this AI-based test provided an estimated 65.5% reduction of the diagnostic time for the material analyzed. Given its optimal sensitivity and NPV, Paige Prostate has the potential to be employed for the automated identification of patients whose histologic slides could forgo full histopathologic review. In addition to providing incremental improvements in diagnostic accuracy and efficiency, this AI-based system identified patients whose prostate cancers were not initially diagnosed by three experienced histopathologists. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
人工智能(AI)为基础的系统应用于组织病理学全切片图像,有潜力通过减轻诊断可变性、组织病理学工作量和病理学家短缺带来的挑战来改善患者的护理。我们旨在定义基于人工智能的自动前列腺癌检测系统 PaigeProstate 在独立真实世界数据中的性能。该算法用于将幻灯片分类为两类:良性(无需进一步审查)或可疑(需要进行额外的组织学和/或免疫组织化学分析)。我们评估了当地病理学家、两名中央病理学家和 PaigeProstate 在诊断 100 名连续患者的 600 个经直肠超声引导前列腺针芯活检区域(“部分标本”)中的灵敏度、特异性、阳性预测值(PPV)和阴性预测值(NPV),并确定 PaigeProstate 对诊断准确性和效率的影响。PaigeProstate 在部分标本水平上显示出很高的灵敏度(0.99;CI 0.96-1.0)、NPV(1.0;CI 0.98-1.0)和特异性(0.93;CI 0.90-0.96)。在患者水平上,当特异性为 0.78(CI 0.64-0.89)时,PaigeProstate 显示出最佳的灵敏度(1.0;CI 0.93-1.0)和 NPV(1.0;CI 0.91-1.0)。PaigeProstate 认为 27 个可疑的部分标本最终诊断为良性,这些标本包括萎缩(n=14)、萎缩和顶端前列腺组织(n=1)、顶端/良性前列腺组织(n=9)、腺瘤(n=2)和萎缩后增生(n=1)。PaigeProstate 导致四名额外的患者的诊断从良性/可疑升级为恶性。此外,这种基于人工智能的测试估计可以减少 65.5%分析材料的诊断时间。鉴于其最佳的灵敏度和 NPV,PaigeProstate 有可能用于自动识别其组织切片可以避免全面组织病理学审查的患者。除了提供诊断准确性和效率的增量改进外,这种基于人工智能的系统还识别出了三名经验丰富的组织病理学家最初未诊断出的前列腺癌患者。
Nat Commun. 2025-5-27
Cancers (Basel). 2025-4-16
J Med Internet Res. 2025-4-2
J Pathol Inform. 2024-11-19
Nat Rev Clin Oncol. 2025-4
Lancet Digit Health. 2020-8
Arch Pathol Lab Med. 2019-11-15
Arch Pathol Lab Med. 2019-10