文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

临床级别的自动化前列腺癌检测系统的独立真实世界应用。

Independent real-world application of a clinical-grade automated prostate cancer detection system.

机构信息

Grupo Oncoclinicas, Sao Paulo, Brazil.

Instituto Mario Penna, Belo Horizonte, Brazil.

出版信息

J Pathol. 2021 Jun;254(2):147-158. doi: 10.1002/path.5662. Epub 2021 Apr 27.


DOI:10.1002/path.5662
PMID:33904171
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8252036/
Abstract

Artificial intelligence (AI)-based systems applied to histopathology whole-slide images have the potential to improve patient care through mitigation of challenges posed by diagnostic variability, histopathology caseload, and shortage of pathologists. We sought to define the performance of an AI-based automated prostate cancer detection system, Paige Prostate, when applied to independent real-world data. The algorithm was employed to classify slides into two categories: benign (no further review needed) or suspicious (additional histologic and/or immunohistochemical analysis required). We assessed the sensitivity, specificity, positive predictive values (PPVs), and negative predictive values (NPVs) of a local pathologist, two central pathologists, and Paige Prostate in the diagnosis of 600 transrectal ultrasound-guided prostate needle core biopsy regions ('part-specimens') from 100 consecutive patients, and to ascertain the impact of Paige Prostate on diagnostic accuracy and efficiency. Paige Prostate displayed high sensitivity (0.99; CI 0.96-1.0), NPV (1.0; CI 0.98-1.0), and specificity (0.93; CI 0.90-0.96) at the part-specimen level. At the patient level, Paige Prostate displayed optimal sensitivity (1.0; CI 0.93-1.0) and NPV (1.0; CI 0.91-1.0) at a specificity of 0.78 (CI 0.64-0.89). The 27 part-specimens considered by Paige Prostate as suspicious, whose final diagnosis was benign, were found to comprise atrophy (n = 14), atrophy and apical prostate tissue (n = 1), apical/benign prostate tissue (n = 9), adenosis (n = 2), and post-atrophic hyperplasia (n = 1). Paige Prostate resulted in the identification of four additional patients whose diagnoses were upgraded from benign/suspicious to malignant. Additionally, this AI-based test provided an estimated 65.5% reduction of the diagnostic time for the material analyzed. Given its optimal sensitivity and NPV, Paige Prostate has the potential to be employed for the automated identification of patients whose histologic slides could forgo full histopathologic review. In addition to providing incremental improvements in diagnostic accuracy and efficiency, this AI-based system identified patients whose prostate cancers were not initially diagnosed by three experienced histopathologists. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.

摘要

人工智能(AI)为基础的系统应用于组织病理学全切片图像,有潜力通过减轻诊断可变性、组织病理学工作量和病理学家短缺带来的挑战来改善患者的护理。我们旨在定义基于人工智能的自动前列腺癌检测系统 PaigeProstate 在独立真实世界数据中的性能。该算法用于将幻灯片分类为两类:良性(无需进一步审查)或可疑(需要进行额外的组织学和/或免疫组织化学分析)。我们评估了当地病理学家、两名中央病理学家和 PaigeProstate 在诊断 100 名连续患者的 600 个经直肠超声引导前列腺针芯活检区域(“部分标本”)中的灵敏度、特异性、阳性预测值(PPV)和阴性预测值(NPV),并确定 PaigeProstate 对诊断准确性和效率的影响。PaigeProstate 在部分标本水平上显示出很高的灵敏度(0.99;CI 0.96-1.0)、NPV(1.0;CI 0.98-1.0)和特异性(0.93;CI 0.90-0.96)。在患者水平上,当特异性为 0.78(CI 0.64-0.89)时,PaigeProstate 显示出最佳的灵敏度(1.0;CI 0.93-1.0)和 NPV(1.0;CI 0.91-1.0)。PaigeProstate 认为 27 个可疑的部分标本最终诊断为良性,这些标本包括萎缩(n=14)、萎缩和顶端前列腺组织(n=1)、顶端/良性前列腺组织(n=9)、腺瘤(n=2)和萎缩后增生(n=1)。PaigeProstate 导致四名额外的患者的诊断从良性/可疑升级为恶性。此外,这种基于人工智能的测试估计可以减少 65.5%分析材料的诊断时间。鉴于其最佳的灵敏度和 NPV,PaigeProstate 有可能用于自动识别其组织切片可以避免全面组织病理学审查的患者。除了提供诊断准确性和效率的增量改进外,这种基于人工智能的系统还识别出了三名经验丰富的组织病理学家最初未诊断出的前列腺癌患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29ad/8252036/573c54aba1c3/PATH-254-147-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29ad/8252036/33e9e3b4882a/PATH-254-147-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29ad/8252036/874a3028356b/PATH-254-147-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29ad/8252036/dd47bc981295/PATH-254-147-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29ad/8252036/c8c42d1117de/PATH-254-147-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29ad/8252036/b6da95e8cb6c/PATH-254-147-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29ad/8252036/573c54aba1c3/PATH-254-147-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29ad/8252036/33e9e3b4882a/PATH-254-147-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29ad/8252036/874a3028356b/PATH-254-147-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29ad/8252036/dd47bc981295/PATH-254-147-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29ad/8252036/c8c42d1117de/PATH-254-147-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29ad/8252036/b6da95e8cb6c/PATH-254-147-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29ad/8252036/573c54aba1c3/PATH-254-147-g002.jpg

相似文献

[1]
Independent real-world application of a clinical-grade automated prostate cancer detection system.

J Pathol. 2021-6

[2]
An independent assessment of an artificial intelligence system for prostate cancer detection shows strong diagnostic accuracy.

Mod Pathol. 2021-8

[3]
Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies.

Mod Pathol. 2020-10

[4]
Clinical Validation of Artificial Intelligence-Augmented Pathology Diagnosis Demonstrates Significant Gains in Diagnostic Accuracy in Prostate Cancer Detection.

Arch Pathol Lab Med. 2023-10-1

[5]
An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study.

Lancet Digit Health. 2020-8

[6]
Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study.

Lancet Oncol. 2020-1-8

[7]
Development and Validation of an Artificial Intelligence-Powered Platform for Prostate Cancer Grading and Quantification.

JAMA Netw Open. 2021-11-1

[8]
Artificial intelligence-assisted cancer diagnosis improves the efficiency of pathologists in prostatic biopsies.

Virchows Arch. 2023-3

[9]
Evaluation of the Use of Combined Artificial Intelligence and Pathologist Assessment to Review and Grade Prostate Biopsies.

JAMA Netw Open. 2020-11-2

[10]
Applications of artificial intelligence in prostate cancer histopathology.

Urol Oncol. 2024-3

引用本文的文献

[1]
The state of the art in artificial intelligence and digital pathology in prostate cancer.

Nat Rev Urol. 2025-8-4

[2]
AI-based virtual immunocytochemistry for rapid and robust fine needle aspiration biopsy diagnosis.

Diagn Pathol. 2025-7-17

[3]
Generating dermatopathology reports from gigapixel whole slide images with HistoGPT.

Nat Commun. 2025-5-27

[4]
Artificial Intelligence Advancements in Oncology: A Review of Current Trends and Future Directions.

Biomedicines. 2025-4-13

[5]
An Overview of Artificial Intelligence in Gynaecological Pathology Diagnostics.

Cancers (Basel). 2025-4-16

[6]
The Role of Artificial Intelligence in the Evaluation of Prostate Pathology.

Pathol Int. 2025-5

[7]
Public Awareness of and Attitudes Toward the Use of AI in Pathology Research and Practice: Mixed Methods Study.

J Med Internet Res. 2025-4-2

[8]
Clinical implications of deep learning based image analysis of whole radical prostatectomy specimens.

Sci Rep. 2025-3-31

[9]
Advancements in pathology: Digital transformation, precision medicine, and beyond.

J Pathol Inform. 2024-11-19

[10]
Artificial intelligence in digital pathology - time for a reality check.

Nat Rev Clin Oncol. 2025-4

本文引用的文献

[1]
An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study.

Lancet Digit Health. 2020-8

[2]
Clinical deployment of AI for prostate cancer diagnosis.

Lancet Digit Health. 2020-8

[3]
Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists.

Mod Pathol. 2021-3

[4]
Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies.

Mod Pathol. 2020-10

[5]
Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study.

Lancet Oncol. 2020-1-8

[6]
Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study.

Lancet Oncol. 2020-1-8

[7]
False-Negative Histopathologic Diagnosis of Prostatic Adenocarcinoma.

Arch Pathol Lab Med. 2019-11-15

[8]
Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods.

Acad Pathol. 2019-9-3

[9]
Clinical-grade computational pathology using weakly supervised deep learning on whole slide images.

Nat Med. 2019-7-15

[10]
Regulating Artificial Intelligence for a Successful Pathology Future.

Arch Pathol Lab Med. 2019-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索