Suppr超能文献

机器人辅助腹腔镜根治性前列腺切除术后尿失禁预测模型:系统评价。

Prediction models for urinary incontinence after robotic-assisted laparoscopic radical prostatectomy: a systematic review.

机构信息

Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China.

Department of Reproductive Medicine Center, The Second Norman Bethune Hospital of Jilin University, Changchun, China.

出版信息

J Robot Surg. 2024 Jun 13;18(1):249. doi: 10.1007/s11701-024-02009-2.

Abstract

Even though robotic-assisted laparoscopic radical prostatectomy (RARP) is superior to open surgery in reducing postoperative complications, 6-20% of patients still experience urinary incontinence (UI) after surgery. Therefore, many researchers have established predictive models for UI occurrence after RARP, but the predictive performance of these models is inconsistent. This study aims to systematically review and critically evaluate the published prediction models of UI risk for patients after RARP. We conducted a comprehensive literature search in the databases of PubMed, Cochrane Library, Web of Science, and Embase. Literature published from inception to March 20, 2024, which reported the development and/or validation of clinical prediction models for the occurrence of UI after RARP. We identified seven studies with eight models that met our inclusion criteria. Most of the studies used logistic regression models to predict the occurrence of UI after RARP. The most common predictors included age, body mass index, and nerve sparing procedure. The model performance ranged from poor to good, with the area under the receiver operating characteristic curves ranging from 0.64 to 0.98 in studies. All the studies have a high risk of bias. Despite their potential for predicting UI after RARP, clinical prediction models are restricted by their limited accuracy and high risk of bias. In the future, the study design should be improved, the potential predictors should be considered from larger and representative samples comprehensively, and high-quality risk prediction models should be established. And externally validating models performance to enhance their clinical accuracy and applicability.

摘要

尽管机器人辅助腹腔镜前列腺根治术(RARP)在减少术后并发症方面优于开放手术,但仍有 6-20%的患者在手术后出现尿失禁(UI)。因此,许多研究人员已经建立了 RARP 后 UI 发生的预测模型,但这些模型的预测性能并不一致。本研究旨在系统地回顾和批判性地评估 RARP 后患者 UI 风险的预测模型。我们在 PubMed、Cochrane Library、Web of Science 和 Embase 数据库中进行了全面的文献检索。文献发表时间为从开始到 2024 年 3 月 20 日,报道了 RARP 后 UI 发生的临床预测模型的开发和/或验证。我们确定了符合纳入标准的七项研究,共包含八个模型。大多数研究使用逻辑回归模型来预测 RARP 后 UI 的发生。最常见的预测因素包括年龄、体重指数和神经保留手术。模型性能从差到好不等,研究中的受试者工作特征曲线下面积范围为 0.64 至 0.98。所有研究都存在高偏倚风险。尽管临床预测模型具有预测 RARP 后 UI 的潜力,但它们受到准确性有限和高偏倚风险的限制。未来,研究设计应加以改进,应从更大、更具代表性的样本中全面考虑潜在的预测因素,并建立高质量的风险预测模型。并通过外部验证模型性能来提高其临床准确性和适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验