Suppr超能文献

利用对照的替代定义提高 GWAS 的统计功效。

Using Alternative Definitions of Controls to Increase Statistical Power in GWAS.

机构信息

Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX, USA.

出版信息

Behav Genet. 2024 Jul;54(4):353-366. doi: 10.1007/s10519-024-10187-w. Epub 2024 Jun 13.

Abstract

Genome-wide association studies (GWAS) are often underpowered due to small effect sizes of common single nucleotide polymorphisms (SNPs) on phenotypes and extreme multiple testing thresholds. The most common approach for increasing statistical power is to increase sample size. We propose an alternative strategy of redefining case-control outcomes into ordinal case-subthreshold-asymptomatic variables. While maintaining the clinical case threshold, we subdivide controls into two groups: individuals who are symptomatic but do not meet the clinical criteria for diagnosis (subthreshold) and individuals who are effectively asymptomatic. We conducted a simulation study to examine the impact of effect size, minor allele frequency, population prevalence, and the prevalence of the subthreshold group on statistical power to detect genetic associations in three scenarios: a standard case-control, an ordinal, and a case-asymptomatic control analysis. Our results suggest the ordinal model consistently provides the greatest statistical power while the case-control model the least. Power in the case-asymptomatic control model reflects the case-control or ordinal model depending on the population prevalence and size of the subthreshold category. We then analyzed a major depression phenotype from the UK Biobank to corroborate our simulation results. Overall, the ordinal model improves statistical power in GWAS consistent with increasing the sample size by approximately 10%.

摘要

全基因组关联研究(GWAS)由于常见单核苷酸多态性(SNP)对表型的效应大小较小和极端的多重检验阈值,通常效力不足。增加统计效力的最常见方法是增加样本量。我们提出了一种替代策略,即将病例对照结果重新定义为有序病例-亚阈值-无症状变量。在维持临床病例阈值的同时,我们将对照分为两组:有症状但不符合诊断临床标准的个体(亚阈值)和实际上无症状的个体。我们进行了一项模拟研究,以检验效应大小、次要等位基因频率、人群患病率以及亚阈值组的患病率对三种情况下检测遗传关联的统计效力的影响:标准病例对照、有序和病例-无症状对照分析。我们的结果表明,有序模型始终提供最大的统计效力,而病例对照模型则提供最小的统计效力。病例-无症状对照模型的效力反映了病例对照或有序模型,具体取决于人群患病率和亚阈值类别的大小。然后,我们分析了来自英国生物库的重度抑郁症表型,以证实我们的模拟结果。总体而言,有序模型通过增加约 10%的样本量来提高 GWAS 的统计效力。

相似文献

4
Antidepressants for the treatment of depression in people with cancer.用于治疗癌症患者抑郁症的抗抑郁药。
Cochrane Database Syst Rev. 2018 Apr 23;4(4):CD011006. doi: 10.1002/14651858.CD011006.pub3.
5
Interventions to reduce harm from continued tobacco use.减少持续吸烟危害的干预措施。
Cochrane Database Syst Rev. 2016 Oct 13;10(10):CD005231. doi: 10.1002/14651858.CD005231.pub3.

本文引用的文献

1
Phenotypic subtyping via contrastive learning.通过对比学习进行表型亚型分析。
bioRxiv. 2023 Jan 6:2023.01.05.522921. doi: 10.1101/2023.01.05.522921.
7
Discovery and implications of polygenicity of common diseases.常见疾病多基因遗传的发现及其意义。
Science. 2021 Sep 24;373(6562):1468-1473. doi: 10.1126/science.abi8206. Epub 2021 Sep 23.
10
GW-SEM 2.0: Efficient, Flexible, and Accessible Multivariate GWAS.GW-SEM 2.0:高效、灵活且易于访问的多元 GWAS。
Behav Genet. 2021 May;51(3):343-357. doi: 10.1007/s10519-021-10043-1. Epub 2021 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验