Suppr超能文献

使用机器学习预测川崎病静脉注射免疫球蛋白无反应者的模型。

Prediction Models for Intravenous Immunoglobulin Non-Responders of Kawasaki Disease Using Machine Learning.

机构信息

Department of Pediatrics, Haibara Hospital, Makinohara City, Shizuoka, Japan.

The Shizuoka Kawasaki Disease Study Group, Shizuoka, Japan.

出版信息

Clin Drug Investig. 2024 Jun;44(6):425-437. doi: 10.1007/s40261-024-01373-z. Epub 2024 Jun 13.

Abstract

BACKGROUND AND OBJECTIVE

Intravenous immunoglobulin (IVIG) is a prominent therapeutic agent for Kawasaki disease (KD) that significantly reduces the incidence of coronary artery anomalies. Various methodologies, including machine learning, have been employed to develop IVIG non-responder prediction models; however, their validation and reproducibility remain unverified. This study aimed to develop a predictive scoring system for identifying IVIG nonresponders and rigorously test the accuracy and reliability of this system. METHODS: The study included an exposure group of 228 IVIG non-responders and a control group of 997 IVIG responders. Subsequently, a predictive machine learning model was constructed. The Shizuoka score, including variables such as the "initial treatment date" (cutoff: < 4 days), sodium level (cutoff: < 133 mEq/L), total bilirubin level (cutoff: ≥ 0.5 mg/dL), and neutrophil-to-lymphocyte ratio (cutoff: ≥ 2.6), was established. Patients meeting two or more of these criteria were grouped as high-risk IVIG non-responders. Using the Shizuoka score to stratify IVIG responders, propensity score matching was used to analyze 85 patients each for IVIG and IVIG-added prednisolone treatment in the high-risk group. In the IVIG plus prednisolone group, the IVIG non-responder count significantly decreased (p < 0.001), with an odds ratio of 0.192 (95% confidence interval 0.078-0.441). CONCLUSIONS: Intravenous immunoglobulin non-responders were predicted using machine learning models and validated using propensity score matching. The initiation of initial IVIG-added prednisolone treatment in the high-risk group identified by the Shizuoka score, crafted using machine learning models, appears useful for predicting IVIG non-responders.

摘要

背景与目的

静脉注射免疫球蛋白(IVIG)是川崎病(KD)的主要治疗药物,可显著降低冠状动脉异常的发生率。各种方法,包括机器学习,已被用于开发 IVIG 无反应预测模型;然而,其验证和可重复性仍未得到验证。本研究旨在开发一种预测评分系统,以识别 IVIG 无反应者,并严格测试该系统的准确性和可靠性。

方法

本研究纳入 228 例 IVIG 无反应者和 997 例 IVIG 反应者作为暴露组。随后构建了一个预测性机器学习模型。静冈评分包括“初始治疗日期”(临界值:<4 天)、钠水平(临界值:<133 mEq/L)、总胆红素水平(临界值:≥0.5 mg/dL)和中性粒细胞与淋巴细胞比值(临界值:≥2.6)等变量。符合两个或更多这些标准的患者被归类为高风险 IVIG 无反应者。使用静冈评分对 IVIG 反应者进行分层,通过倾向评分匹配分析高风险组中 85 例接受 IVIG 和 IVIG 加泼尼松龙治疗的患者。在 IVIG 加泼尼松龙组中,IVIG 无反应者数量显著减少(p<0.001),优势比为 0.192(95%置信区间 0.078-0.441)。

结论

使用机器学习模型预测 IVIG 无反应者,并使用倾向评分匹配进行验证。使用机器学习模型制定的静冈评分,对高危组患者初始 IVIG 加泼尼松龙治疗的启动,似乎有助于预测 IVIG 无反应者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验