Suppr超能文献

sMRI-ADNet:一种可解释的深度学习框架,仅从结构 MRI 中整合阿尔茨海默病的欧几里得图表示。

sMRI-ADNet: an interpretable deep learning framework integrating Euclidean-graph representations of Alzheimer's disease solely from structural MRI.

机构信息

School of Computer and Control Engineering, Yantai University, Yantai, 264005, China.

Department of Radiology, Yantai Yuhuangding Hospital Affiliated with Qingdao University Medical College, Yantai, 264099, China.

出版信息

MAGMA. 2024 Oct;37(5):845-857. doi: 10.1007/s10334-024-01178-3. Epub 2024 Jun 13.

Abstract

OBJECTIVE

To establish a multi-dimensional representation solely on structural MRI (sMRI) for early diagnosis of AD.

METHODS

A total of 3377 participants' sMRI from four independent databases were retrospectively identified to construct an interpretable deep learning model that integrated multi-dimensional representations of AD solely on sMRI (called sMRI-ADNet) by a dual-channel learning strategy of gray matter volume (GMV) from Euclidean space and the regional radiomics similarity network (R2SN) from graph space. Specifically, the GMV feature map learning channel (called GMV-Channel) was to take into consideration spatial information of both long-range spatial relations and detailed localization information, while the node feature and connectivity strength learning channel (called NFCS-Channel) was to characterize the graph-structured R2SN network by a separable learning strategy.

RESULTS

The sMRI-ADNet achieved a superior classification accuracy of 92.1% and 91.4% under intra-database and inter-database cross-validation. The GMV-Channel and NFCS-Channel captured complementary group-discriminative brain regions, revealing a complementary interpretation of the multi-dimensional representation of brain structure in Euclidean and graph spaces respectively. Besides, the generalizable and reproducible interpretation of the multi-dimensional representation in capturing complementary group-discriminative brain regions revealed a significant correlation between the four independent databases (p < 0.05). Significant associations (p < 0.05) between attention scores and brain abnormality, between classification scores and clinical measure of cognitive ability, CSF biomarker, metabolism, and genetic risk score also provided solid neurobiological interpretation.

CONCLUSION

The sMRI-ADNet solely on sMRI could leverage the complementary multi-dimensional representations of AD in Euclidean and graph spaces, and achieved superior performance in the early diagnosis of AD, facilitating its potential in both clinical translation and popularization.

摘要

目的

建立一个仅基于结构磁共振成像(sMRI)的多维表示模型,用于 AD 的早期诊断。

方法

回顾性地从四个独立的数据库中确定了 3377 名参与者的 sMRI,以构建一个可解释的深度学习模型,该模型通过基于欧式空间的灰质体积(GMV)和基于图空间的区域放射组学相似网络(R2SN)的双通道学习策略,整合了 AD 仅基于 sMRI 的多维表示(称为 sMRI-ADNet)。具体来说,GMV 特征图学习通道(称为 GMV-Channel)考虑了长程空间关系和详细定位信息的空间信息,而节点特征和连接强度学习通道(称为 NFCS-Channel)则通过可分离的学习策略来描述图结构的 R2SN 网络。

结果

sMRI-ADNet 在内部和外部数据库交叉验证中均实现了 92.1%和 91.4%的优异分类准确性。GMV-Channel 和 NFCS-Channel 分别捕获了具有互补组间区分能力的大脑区域,分别从欧几里得空间和图空间对大脑结构的多维表示进行了互补解释。此外,在捕捉具有互补组间区分能力的大脑区域方面,多维表示的可推广和可重复解释揭示了四个独立数据库之间存在显著相关性(p<0.05)。注意力评分与大脑异常之间、分类评分与认知能力的临床测量、CSF 生物标志物、代谢和遗传风险评分之间的显著相关性(p<0.05)也提供了坚实的神经生物学解释。

结论

仅基于 sMRI 的 sMRI-ADNet 可以利用 AD 在欧几里得和图空间中的互补多维表示,并在 AD 的早期诊断中取得优异的性能,为其在临床转化和推广方面的应用提供了潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验