Suppr超能文献

基于双能 CT 虚拟平扫图像的全自动 3D 器官分割实现肝脏脂肪定量评估的自动化。

Automated hepatic steatosis assessment on dual-energy CT-derived virtual non-contrast images through fully-automated 3D organ segmentation.

机构信息

Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.

Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea.

出版信息

Radiol Med. 2024 Jul;129(7):967-976. doi: 10.1007/s11547-024-01833-8. Epub 2024 Jun 13.

Abstract

PURPOSE

To evaluate the efficacy of volumetric CT attenuation-based parameters obtained through automated 3D organ segmentation on virtual non-contrast (VNC) images from dual-energy CT (DECT) for assessing hepatic steatosis.

MATERIALS AND METHODS

This retrospective study included living liver donor candidates having liver DECT and MRI-determined proton density fat fraction (PDFF) assessments. Employing a 3D deep learning algorithm, the liver and spleen were automatically segmented from VNC images (derived from contrast-enhanced DECT scans) and true non-contrast (TNC) images, respectively. Mean volumetric CT attenuation values of each segmented liver (L) and spleen (S) were measured, allowing for liver attenuation index (LAI) calculation, defined as L minus S. Agreements of VNC and TNC parameters for hepatic steatosis, i.e., L and LAI, were assessed using intraclass correlation coefficients (ICC). Correlations between VNC parameters and MRI-PDFF values were assessed using the Pearson's correlation coefficient. Their performance to identify MRI-PDFF ≥ 5% and ≥ 10% was evaluated using receiver operating characteristic (ROC) curve analysis.

RESULTS

Of 252 participants, 56 (22.2%) and 16 (6.3%) had hepatic steatosis with MRI-PDFF ≥ 5% and ≥ 10%, respectively. L and LAI showed excellent agreement with L and LAI (ICC = 0.957 and 0.968) and significant correlations with MRI-PDFF values (r = - 0.585 and - 0.588, Ps < 0.001). L and LAI exhibited areas under the ROC curve of 0.795 and 0.806 for MRI-PDFF ≥ 5%; and 0.916 and 0.932, for MRI-PDFF ≥ 10%, respectively.

CONCLUSION

Volumetric CT attenuation-based parameters from VNC images generated by DECT, via automated 3D segmentation of the liver and spleen, have potential for opportunistic hepatic steatosis screening, as an alternative to TNC images.

摘要

目的

评估基于容积 CT 衰减的参数通过自动 3D 器官分割在虚拟非对比(VNC)图像从双能 CT(DECT)对评估肝脂肪变性的疗效。

材料与方法

本回顾性研究纳入了有肝脏 DECT 和 MRI 质子密度脂肪分数(PDFF)评估的活体肝供体候选者。采用三维深度学习算法,分别从 VNC 图像(来源于增强 DECT 扫描)和真实非对比(TNC)图像自动分割肝脏和脾脏。测量每个分割肝脏(L)和脾脏(S)的平均容积 CT 衰减值,允许计算肝衰减指数(LAI),定义为 L 减去 S。采用组内相关系数(ICC)评估 VNC 和 TNC 参数对肝脂肪变性的一致性,即 L 和 LAI。采用 Pearson 相关系数评估 VNC 参数与 MRI-PDFF 值之间的相关性。采用受试者工作特征(ROC)曲线分析评估其识别 MRI-PDFF≥5%和≥10%的性能。

结果

252 名参与者中,56 名(22.2%)和 16 名(6.3%)分别有 MRI-PDFF≥5%和≥10%的肝脂肪变性。L 和 LAI 与 L 和 LAI 具有极好的一致性(ICC=0.957 和 0.968),与 MRI-PDFF 值有显著相关性(r=-0.585 和-0.588,P<0.001)。L 和 LAI 对 MRI-PDFF≥5%的ROC 曲线下面积分别为 0.795 和 0.806;对 MRI-PDFF≥10%的 ROC 曲线下面积分别为 0.916 和 0.932。

结论

DECT 自动肝脾 3D 分割生成的 VNC 图像基于容积 CT 衰减的参数,有潜力作为 TNC 图像的替代方法,用于机会性肝脂肪变性筛查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e63/11252222/5f2b3fb45638/11547_2024_1833_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验