Romanin Ludovica, Milani Bastien, Roy Christopher W, Yerly Jérôme, Bustin Aurélien, Si-Mohamed Salim, Prsa Milan, Rutz Tobias, Tenisch Estelle, Schwitter Juerg, Stuber Matthias, Piccini Davide
Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland.
PLoS One. 2024 Jun 13;19(6):e0304612. doi: 10.1371/journal.pone.0304612. eCollection 2024.
A similarity-driven multi-dimensional binning algorithm (SIMBA) reconstruction of free-running cardiac magnetic resonance imaging data was previously proposed. While very efficient and fast, the original SIMBA focused only on the reconstruction of a single motion-consistent cluster, discarding the remaining data acquired. However, the redundant data clustered by similarity may be exploited to further improve image quality. In this work, we propose a novel compressed sensing (CS) reconstruction that performs an effective regularization over the clustering dimension, thanks to the integration of inter-cluster motion compensation (XD-MC-SIMBA). This reconstruction was applied to free-running ferumoxytol-enhanced datasets from 24 patients with congenital heart disease, and compared to the original SIMBA, the same XD-MC-SIMBA reconstruction but without motion compensation (XD-SIMBA), and a 5D motion-resolved CS reconstruction using the free-running framework (FRF). The resulting images were compared in terms of lung-liver and blood-myocardium sharpness, blood-myocardium contrast ratio, and visible length and sharpness of the coronary arteries. Moreover, an automated image quality score (IQS) was assigned using a pretrained deep neural network. The lung-liver sharpness and blood-myocardium sharpness were significantly higher in XD-MC-SIMBA and FRF. Consistent with these findings, the IQS analysis revealed that image quality for XD-MC-SIMBA was improved in 18 of 24 cases, compared to SIMBA. We successfully tested the hypothesis that multiple motion-consistent SIMBA clusters can be exploited to improve the quality of ferumoxytol-enhanced cardiac MRI when inter-cluster motion-compensation is integrated as part of a CS reconstruction.
先前提出了一种基于相似性驱动的多维分箱算法(SIMBA)对自由呼吸心脏磁共振成像数据进行重建。虽然原始的SIMBA非常高效且快速,但它仅专注于单个运动一致簇的重建,丢弃了采集到的其余数据。然而,通过相似性聚类的冗余数据可被利用来进一步提高图像质量。在这项工作中,我们提出了一种新颖的压缩感知(CS)重建方法,由于集成了簇间运动补偿(XD-MC-SIMBA),该方法在聚类维度上进行了有效的正则化。这种重建方法应用于24例先天性心脏病患者的自由呼吸铁氧还蛋白增强数据集,并与原始的SIMBA、相同的但没有运动补偿的XD-MC-SIMBA重建方法(XD-SIMBA)以及使用自由呼吸框架(FRF)的5D运动分辨CS重建方法进行比较。从肺-肝和血-心肌清晰度、血-心肌对比度以及冠状动脉的可见长度和清晰度方面对所得图像进行比较。此外,使用预训练的深度神经网络分配自动图像质量评分(IQS)。XD-MC-SIMBA和FRF中的肺-肝清晰度和血-心肌清晰度显著更高。与这些发现一致,IQS分析显示,与SIMBA相比,24例中有18例的XD-MC-SIMBA图像质量得到改善。我们成功验证了这样一个假设,即当将簇间运动补偿作为CS重建的一部分进行集成时,可以利用多个运动一致的SIMBA簇来提高铁氧还蛋白增强心脏MRI的质量。