Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States.
Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland; Center for Biomedical Imaging, Lausanne, Switzerland.
Magn Reson Imaging. 2024 Nov;113:110209. doi: 10.1016/j.mri.2024.07.008. Epub 2024 Jul 5.
5D, free-running imaging resolves sets of 3D whole-heart images in both cardiac and respiratory dimensions. In an application such as coronary imaging when a single, static image is of interest, computationally expensive offline iterative reconstruction is still needed to compute the multiple 3D datasets.
Evaluate how the number of physiologic bins included in the reconstruction affects the computational cost and resulting image quality of a single, static volume reconstruction.
Retrospective.
15 pediatric patients following Ferumoxytol infusion (4 mg/kg).
FIELD STRENGTH/SEQUENCE: 1.5 T/Ungated 5D free-running GRE sequence.
The raw data of each subject were binned and reconstructed into a 5D (x-y-z-cardiac-respiratory) images. 1, 3, 5, 7, and 9 bins adjacent to both sides of the retrospectively determined cardiac resting phase and 1, 3 bins adjacent to the end-expiration phase are used for limited frame reconstructions. The static volume within each limited reconstruction was compared with the corresponding full 5D reconstruction using the structural similarity index measure (SSIM). A non-linear regression model was used to fit SSIM with the percentage of data used compared to full reconstruction (% data). A linear regression model was used to fit computation time with % raw data used. Coronary artery sharpness is measured on each limited reconstructed images to determine the minimal number of cardiac and respiratory bins needed to preserve image quality.
The coefficient of determination (R) is computed for each regression model.
The % of data used in the reconstruction was linearly related to the computational time (R = 0.99). The SSIM of the static image from the limited reconstructions is non-linearly related with the % of data used (R = 0.80). Over the 15 patients, the model showed SSIM of 0.9 with 18% of data, and SSIM of 0.96 with 30% of data. The coronary artery sharpness of images reconstructed using no less than 5 cardiac and all respiratory phases is not significantly different from the full reconstructed images using all cardiac and respiratory bins.
Reconstruction using only a limited number of acquired physiological states can linearly reduce the computational cost while preserving similarity to the full reconstruction image. It is suggested to use no less than 5 cardiac and all respiratory phases in the limited reconstruction to best preserve the original quality seen on the full reconstructed images.
5D 自由运行成像可在心脏和呼吸维度上解析多组 3D 全心图像。在冠状动脉成像等应用中,当只对单个静态图像感兴趣时,仍需要计算成本高昂的离线迭代重建来计算多个 3D 数据集。
评估重建中包含的生理-bin 数量如何影响单个静态容积重建的计算成本和结果图像质量。
回顾性研究。
15 名接受 Ferumoxytol 输注(4mg/kg)的儿科患者。
磁场强度/序列:1.5T/非门控 5D 自由运行 GRE 序列。
每位受试者的原始数据被分为 bin 并重建为 5D(x-y-z-心脏-呼吸)图像。从回顾性确定的心脏休息期两侧以及呼气末期相邻的 1、3、5、7 和 9 个 bin 用于有限帧重建。使用结构相似性指数测量(SSIM)比较每个有限重建内的静态容积与相应的全 5D 重建。使用非线性回归模型将 SSIM 拟合为与全重建相比使用的数据百分比(%数据)。使用线性回归模型将计算时间拟合为使用的原始数据百分比(%原始数据)。在每个有限重建的图像上测量冠状动脉锐利度,以确定保留图像质量所需的最小心脏和呼吸-bin 数量。
为每个回归模型计算决定系数(R)。
重建中使用的数据百分比与计算时间呈线性相关(R=0.99)。有限重建的静态图像的 SSIM 与使用的数据百分比呈非线性相关(R=0.80)。在 15 名患者中,该模型显示使用 18%的数据时 SSIM 为 0.9,使用 30%的数据时 SSIM 为 0.96。使用不少于 5 个心脏和所有呼吸阶段重建的冠状动脉锐利度与使用所有心脏和呼吸-bin 重建的全重建图像没有显著差异。
使用有限数量的采集生理状态进行重建可以在线性降低计算成本的同时保持与全重建图像的相似性。建议在有限重建中使用不少于 5 个心脏和所有呼吸阶段,以最佳保留全重建图像上看到的原始质量。