Suppr超能文献

相关生态位模型在预测堪萨斯高草草原系统中景观尺度木本植物入侵方面的应用。

Correlative ecological niche model applications to predicting landscape-scale woody plant encroachment in Kansas tallgrass prairie systems.

作者信息

Peterson A Townsend, Yao Yuan, Cobos Marlon E, Xiao Xiangming

机构信息

Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America.

School of Biological Sciences, Center for Earth Observation and Modeling, University of Oklahoma, Norman, OK, United States of America.

出版信息

PLoS One. 2024 Jun 13;19(6):e0305168. doi: 10.1371/journal.pone.0305168. eCollection 2024.

Abstract

Woody plant encroachment (WPE) in grassland ecosystems has been a pervasive process across the Great Plains, yet a predictive understanding of where it will occur has been elusive. As an exploration of tools of potential utility in this challenge, we mapped WPE processes over the years 2015-2021 in a set of 9 counties in central Kansas. We developed and tested two correlative models based on landscape features: one that assessed distribution of evergreen trees in 2015, and another that assessed areas of WPE in succeeding years. Both models were successful, being able to predict 2015 forest distributions and being able to predict WPE during 2015-2021, as functions of characteristics of landscapes. These simple, correlative models will certainly not be able to predict WPE processes globally, or even regionally, but provide first proof-of-concept explorations for the central Great Plains region.

摘要

草原生态系统中的木本植物入侵(WPE)在大平原地区一直是一个普遍存在的过程,但对其发生地点的预测性理解却难以捉摸。作为探索应对这一挑战的潜在有用工具,我们绘制了2015年至2021年堪萨斯州中部9个县的木本植物入侵过程图。我们基于景观特征开发并测试了两个相关模型:一个评估2015年常绿树木的分布,另一个评估后续年份木本植物入侵的区域。这两个模型都很成功,能够根据景观特征预测2015年的森林分布以及2015年至2021年期间的木本植物入侵情况。这些简单的相关模型肯定无法在全球甚至区域范围内预测木本植物入侵过程,但为大平原中部地区提供了首个概念验证探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44f4/11175484/fe53d1c75355/pone.0305168.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验