Phadikar Ujjwal, Sanyal Gopal, Das Srijib, Kundu Aniruddha, Kuila Chinmoy, Murmu Naresh Chandra, Chakraborty Brahmananda, Kuila Tapas
Electric Mobility and Tribology Research Group (EM&TRG), Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute, Durgapur, 713209, India.
Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India.
ChemSusChem. 2024 Dec 6;17(23):e202400821. doi: 10.1002/cssc.202400821. Epub 2024 Aug 7.
Herein, a self-supported, robust, and noble-metal-free 3D hierarchical interface-rich Fe-doped Co-LDH@MoS-NiS/NF heterostructure electrocatalyst has been prepared through a controllable two-step hydrothermal process. The resultant electrode shows low overpotential of ~95 mV for hydrogen evolution reaction (HER), ~220 mV for the oxygen evolution reaction (OER), and the two-electrode system requires only a cell voltage of ~1.54 V at 10 mA cm current density, respectively. Extensive ab initio calculations were carried out to find out the overpotential for HER, orbital interaction through the determination of electron density of states and quantification of charge transfer by Bader charge analysis. The computed overpotential matched closely with the experimental data. The superior HER performance of the tri-layer is enhanced due to the charge transfer (1.7444 e) to Fe-doped Co-LDH from NiS-MoS hybrid. This research strategy paves an effective pathway for affordable green H production and future efficient non-precious bifunctional electrocatalyst design for overall water electrolysis.
在此,通过可控的两步水热法制备了一种自支撑、坚固且无贵金属的三维分层富界面铁掺杂Co-LDH@MoS-NiS/NF异质结构电催化剂。所得电极在析氢反应(HER)中表现出约95 mV的低过电位,在析氧反应(OER)中表现出约220 mV的低过电位,并且两电极系统在10 mA cm电流密度下仅需要约1.54 V的电池电压。进行了广泛的从头算计算,以通过确定态密度的电子密度和通过Bader电荷分析量化电荷转移来找出HER的过电位。计算得到的过电位与实验数据密切匹配。由于从NiS-MoS杂化物向铁掺杂Co-LDH的电荷转移(1.7444 e),三层结构的优异HER性能得到增强。该研究策略为经济实惠的绿色制氢以及未来用于全水电解的高效非贵金属双功能电催化剂设计铺平了一条有效途径。