Singh Mandeep, Zakria Muhammad, Pannu Amandeep Singh, Sonar Prashant, Smith Christopher, Mahasivam Sanje, Ramanathan Rajesh, Tran Kevin, Tawfik Sherif, Murdoch Billy James, Mayes Edwin Lawrence Harrop, Spencer Michelle J S, Phillips Matthew R, Bansal Vipul, Ton-That Cuong
Ian Potter NanoBioSensing Facility, NanoBiotechnology Research laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia.
School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
ACS Nano. 2024 Jul 2;18(26):16947-16957. doi: 10.1021/acsnano.4c03098. Epub 2024 Jun 13.
Two-dimensional (2D) wide bandgap materials are gaining significant interest for next-generation optoelectronic devices. However, fabricating electronic-grade 2D nanosheets from non-van der Waals (n-vdW) oxide semiconductors poses a great challenge due to their stronger interlayer coupling compared with vdW crystals. This strong coupling typically introduces defects during exfoliation, impairing the optoelectronic properties. Herein, we report the liquid-phase exfoliation of few-atomic-layer thin, defect-free, free-standing ZnO nanosheets. These micron-sized, ultrathin ZnO structures exhibit three different orientations aligned along both the polar -plane as well as the nonpolar - and -planes. The superior crystalline quality of the ZnO nanosheets is validated through comprehensive characterization techniques. This result is supported by density functional theory (DFT) calculations, which reveals that the formation of oxygen vacancies is energetically less favorable in 2D ZnO and that the -plane loses its polarity upon exfoliation. Unlike bulk ZnO, which is typically dominated by defect-induced emission, the exfoliated nanosheets exhibit a strong, ambient-stable excitonic UV emission. We further demonstrate the utility of solution processing of ZnO nanosheets by their hybrid integration with organic components to produce stable light emitting diodes (LEDs) for display applications.
二维(2D)宽带隙材料在下一代光电器件领域正引起广泛关注。然而,与范德华(vdW)晶体相比,由于非范德华(n-vdW)氧化物半导体具有更强的层间耦合,制备电子级2D纳米片极具挑战性。这种强耦合通常会在剥离过程中引入缺陷,损害光电子性能。在此,我们报道了少原子层厚度、无缺陷、独立的ZnO纳米片的液相剥离。这些微米尺寸的超薄ZnO结构呈现出沿极性平面以及非极性平面和平面排列的三种不同取向。通过综合表征技术验证了ZnO纳米片优异的晶体质量。这一结果得到了密度泛函理论(DFT)计算的支持,该计算表明二维ZnO中氧空位的形成在能量上不太有利,并且平面在剥离时失去其极性。与通常由缺陷诱导发射主导的块状ZnO不同,剥离后的纳米片表现出强烈的、环境稳定的激子紫外发射。我们还通过将ZnO纳米片与有机成分混合集成,进一步展示了溶液处理ZnO纳米片在制备用于显示应用的稳定发光二极管(LED)方面的实用性。