Vialetto Jacopo, Ramakrishna Shivaprakash N, Stock Sebastian, von Klitzing Regine, Isa Lucio
Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy; Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland; Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland.
J Colloid Interface Sci. 2024 Oct 15;672:797-804. doi: 10.1016/j.jcis.2024.05.163. Epub 2024 May 28.
The complexation of microgels with rigid nanoparticles is an effective way to impart novel properties and functions to the resulting hybrid particles for applications such as in optics, catalysis, or for the stabilization of foams/emulsions. The nanoparticles affect the conformation of the polymer network, both in bulk aqueous environments and when the microgels are adsorbed at a fluid interface, in a non-trivial manner by modulating the microgel size, stiffness and apparent contact angle.
Here, we provide a detailed investigation, using light scattering, in-situ atomic force microscopy and nano-indentation experiments, of the interaction between poly(N-isopropylacrylamide) microgels and hydrophobized silica nanoparticles after mixing in aqueous suspension to shed light on the network reorganization upon nanoparticle incorporation.
The addition of nanoparticles decreases the microgels' bulk swelling and thermal response. When adsorbed at an oil-water interface, a higher ratio of nanoparticles influences the microgel's stiffness as well as their hydrophobic/hydrophilic character by increasing their effective contact angle, consequently modulating the monolayer response upon interfacial compression. Overall, these results provide fundamental understanding on the complex conformation of hybrid microgels in different environments and give inspiration to design new materials where the combination of a soft polymer network and nanoparticles might result in additional functionalities.
微凝胶与刚性纳米颗粒的复合是一种有效的方法,可为所得的杂化颗粒赋予新的性质和功能,用于光学、催化等应用,或用于泡沫/乳液的稳定化。纳米颗粒以一种非平凡的方式影响聚合物网络的构象,无论是在本体水性环境中,还是当微凝胶吸附在流体界面时,通过调节微凝胶的尺寸、刚度和表观接触角来实现。
在这里,我们使用光散射、原位原子力显微镜和纳米压痕实验,对聚(N-异丙基丙烯酰胺)微凝胶与疏水化二氧化硅纳米颗粒在水悬浮液中混合后的相互作用进行了详细研究,以阐明纳米颗粒掺入后网络的重组情况。
纳米颗粒的加入降低了微凝胶的本体溶胀和热响应。当吸附在油水界面时,较高比例的纳米颗粒通过增加微凝胶的有效接触角来影响其刚度以及疏水/亲水特性,从而调节界面压缩时的单层响应。总体而言,这些结果为不同环境中杂化微凝胶的复杂构象提供了基本理解,并为设计新型材料提供了灵感,在这些材料中,软聚合物网络和纳米颗粒的结合可能会产生额外的功能。