Caprini Davide, Battista Francesco, Zajdel Paweł, Di Muccio Giovanni, Guardiani Carlo, Trump Benjamin, Carter Marcus, Yakovenko Andrey A, Amayuelas Eder, Bartolomé Luis, Meloni Simone, Grosu Yaroslav, Casciola Carlo Massimo, Giacomello Alberto
Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, Italy.
Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, Rome, Italy.
Nat Commun. 2024 Jun 13;15(1):5076. doi: 10.1038/s41467-024-49136-w.
Although coveted in applications, few materials expand when subject to compression or contract under decompression, i.e., exhibit negative compressibility. A key step to achieve such counterintuitive behaviour is the destabilisations of (meta)stable equilibria of the constituents. Here, we propose a simple strategy to obtain negative compressibility exploiting capillary forces both to precompress the elastic material and to release such precompression by a threshold phenomenon - the reversible formation of a bubble in a hydrophobic flexible cavity. We demonstrate that the solid part of such metastable elastocapillary systems displays negative compressibility across different scales: hydrophobic microporous materials, proteins, and millimetre-sized laminae. This concept is applicable to fields such as porous materials, biomolecules, sensors and may be easily extended to create unexpected material susceptibilities.
尽管在应用中备受青睐,但很少有材料在受到压缩时会膨胀或在减压时收缩,即表现出负压缩性。实现这种违反直觉行为的关键一步是成分(亚)稳定平衡的失稳。在这里,我们提出了一种简单的策略来获得负压缩性,利用毛细作用力对弹性材料进行预压缩,并通过一种阈值现象——在疏水柔性腔中可逆地形成气泡来释放这种预压缩。我们证明,这种亚稳态弹性毛细系统的固体部分在不同尺度上都表现出负压缩性:疏水微孔材料、蛋白质和毫米级薄片。这一概念适用于多孔材料、生物分子、传感器等领域,并且可以很容易地扩展以创造出意想不到的材料敏感性。