Zajdel Paweł, Madden David G, Babu Robin, Tortora Marco, Mirani Diego, Tsyrin Nikolay Nikolaevich, Bartolomé Luis, Amayuelas Eder, Fairen-Jimenez David, Lowe Alexander Rowland, Chorążewski Mirosław, Leao Juscelino B, Brown Craig M, Bleuel Markus, Stoudenets Victor, Casciola Carlo Massimo, Echeverría María, Bonilla Francisco, Grancini Giulia, Meloni Simone, Grosu Yaroslav
Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.
The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
ACS Appl Mater Interfaces. 2022 Jun 3;14(23):26699-713. doi: 10.1021/acsami.2c04314.
Controlling the pressure at which liquids intrude (wet) and extrude (dry) a nanopore is of paramount importance for a broad range of applications, such as energy conversion, catalysis, chromatography, separation, ionic channels, and many more. To tune these characteristics, one typically acts on the chemical nature of the system or pore size. In this work, we propose an alternative route for controlling both intrusion and extrusion pressures proper arrangement of the grains of the nanoporous material. To prove the concept, dynamic intrusion-extrusion cycles for powdered and monolithic ZIF-8 metal-organic framework were conducted by means of water porosimetry and neutron scattering. We report a drastic increase in intrusion-extrusion dynamic hysteresis when going from a fine powder to a dense monolith configuration, transforming an intermediate performance of the ZIF-8 + water system (poor molecular spring) into a desirable shock-absorber with more than 1 order of magnitude enhancement of dissipated energy per cycle. The obtained results are supported by MD simulations and pave the way for an alternative methodology of tuning intrusion-extrusion pressure using a macroscopic arrangement of nanoporous material.
控制液体侵入(湿润)和挤出(干燥)纳米孔的压力对于广泛的应用至关重要,例如能量转换、催化、色谱、分离、离子通道等等。为了调节这些特性,人们通常作用于系统的化学性质或孔径。在这项工作中,我们提出了一种控制侵入和挤出压力的替代方法——对纳米多孔材料的颗粒进行适当排列。为了验证这一概念,通过水孔隙率测定法和中子散射对粉末状和整体式ZIF-8金属有机框架进行了动态侵入-挤出循环实验。我们报告了从细粉到致密整体结构时侵入-挤出动态滞后现象的急剧增加,将ZIF-8+水系统的中等性能(较差的分子弹簧)转变为理想的减震器,每个循环的耗散能量增强了1个多数量级。所得结果得到了分子动力学模拟的支持,并为使用纳米多孔材料的宏观排列来调节侵入-挤出压力的替代方法铺平了道路。