Meng Jun, Sheikh Md Sariful, Jacobs Ryan, Liu Jian, Nachlas William O, Li Xiangguo, Morgan Dane
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA.
National Energy Technology Laboratory, Morgantown, WV, USA.
Nat Mater. 2024 Sep;23(9):1252-1258. doi: 10.1038/s41563-024-01919-8. Epub 2024 Jun 13.
New highly oxygen-active materials may enhance many energy-related technologies by enabling efficient oxygen-ion transport at lower temperatures, for example, below ~400 °C. Interstitial oxygen conductors have the potential to realize such performance but have received far less attention than vacancy-mediated conductors. Here we combine physically motivated structure and property descriptors, ab initio simulations and experiments to demonstrate an approach to discover new fast interstitial oxygen conductors. Multiple new families were found, which adopt completely different structures from known oxygen conductors. From these families, we synthesized and studied oxygen kinetics in LaMnSiO, a representative member of the perrierite/chevkinite family. We found that LaMnSiO has higher oxygen-ion conductivity than the widely used yttria-stabilized ZrO, and among the highest surface oxygen exchange rates at the intermediate temperature of known materials. The fast oxygen kinetics is the result of simultaneously active interstitial and interstitialcy diffusion pathways. We propose that the essential features for forming an effective interstitial oxygen conductor are the availability of electrons and structural flexibility, enabling a sufficient accessible volume. This work provides a powerful approach for understanding and discovering new interstitial oxygen conductors.
新型高氧活性材料可以通过在较低温度(例如,低于约400°C)下实现高效的氧离子传输来提升许多与能源相关的技术。间隙氧导体有潜力实现这样的性能,但与空位介导的导体相比,受到的关注要少得多。在这里,我们结合基于物理的结构和性能描述符、从头算模拟和实验,来展示一种发现新型快速间隙氧导体的方法。我们发现了多个新的家族,它们采用与已知氧导体完全不同的结构。从这些家族中,我们合成并研究了钙钛矿/硅铍钇矿家族的代表性成员LaMnSiO中的氧动力学。我们发现LaMnSiO具有比广泛使用的氧化钇稳定的ZrO更高的氧离子电导率,并且在已知材料的中间温度下具有最高的表面氧交换速率之一。快速的氧动力学是间隙扩散和间隙原子扩散途径同时活跃的结果。我们提出,形成有效的间隙氧导体的基本特征是电子的可用性和结构灵活性,从而实现足够的可及体积。这项工作为理解和发现新型间隙氧导体提供了一种有力的方法。