Wang Shuo, Fu Jiamin, Liu Yunsheng, Saravanan Ramanuja Srinivasan, Luo Jing, Deng Sixu, Sham Tsun-Kong, Sun Xueliang, Mo Yifei
Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA.
Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada.
Nat Commun. 2023 Nov 22;14(1):7615. doi: 10.1038/s41467-023-43436-3.
Motivated by the high-performance solid-state lithium batteries enabled by lithium superionic conductors, sodium superionic conductor materials have great potential to empower sodium batteries with high energy, low cost, and sustainability. A critical challenge lies in designing and discovering sodium superionic conductors with high ionic conductivities to enable the development of solid-state sodium batteries. Here, by studying the structures and diffusion mechanisms of Li-ion versus Na-ion conducting solids, we reveal the structural feature of face-sharing high-coordination sites for fast sodium-ion conductors. By applying this feature as a design principle, we discover a number of Na-ion conductors in oxides, sulfides, and halides. Notably, we discover a chloride-based family of Na-ion conductors NaMCl (M = La-Sm) with UCl-type structure and experimentally validate with the highest reported ionic conductivity. Our findings not only pave the way for the future development of sodium-ion conductors for sodium batteries, but also consolidate design principles of fast ion-conducting materials for a variety of energy applications.
受锂超离子导体所推动的高性能固态锂电池的启发,钠超离子导体材料具有极大潜力,可赋予钠电池高能量、低成本和可持续性。一个关键挑战在于设计和发现具有高离子电导率的钠超离子导体,以推动固态钠电池的发展。在此,通过研究锂离子与钠离子传导固体的结构和扩散机制,我们揭示了快速钠离子导体的面共享高配位位点的结构特征。通过将这一特征作为设计原则,我们在氧化物、硫化物和卤化物中发现了多种钠离子导体。值得注意的是,我们发现了一族具有UCl型结构的基于氯化物的钠离子导体NaMCl(M = La - Sm),并通过实验验证了其具有已报道的最高离子电导率。我们的发现不仅为钠电池钠离子导体的未来发展铺平了道路,也巩固了适用于各种能源应用的快速离子传导材料的设计原则。