Suppr超能文献

用于新闻媒体热点挖掘的共现词模型——文本挖掘方法设计

Co-occurrence word model for news media hotspot mining-text mining method design.

作者信息

Zhang Xinyun, Ding Tao

机构信息

School of Arts and Creative Technologies, The University of York, York, United Kingdom.

Department of Statistical Science, University College London, London, United Kingdom.

出版信息

Math Biosci Eng. 2024 Mar 8;21(4):5411-5429. doi: 10.3934/mbe.2024238.

Abstract

Currently, with the rapid growth of online media, more people are obtaining information from it. However, traditional hotspot mining algorithms cannot achieve precise and fast control of hot topics. Aiming at the problem of poor accuracy and timeliness in current news media hotspot mining methods, this paper proposes a hotspot mining method based on the co-occurrence word model. First, a new co-occurrence word model based on word weight is proposed. Then, for key phrase extraction, a hotspot mining algorithm based on the co-occurrence word model and improved smooth inverse frequency rank (SIFRANK) is designed. Finally, the Spark computing framework is introduced to improve the computing efficiency. The experimental outcomes expresses that the new word discovery algorithm discovered 16871 and 17921 new words in the Weibo Short News and Weibo Short Text datasets respectively. The heat weight values of the keywords obtained by the improved SIFRANK reaches 0.9356, 0.9991, and 0.6117. In the Covid19 Tweets dataset, the accuracy is 0.6223, the recall is 0.7015, and the F1 value is 0.6605. In the President-elects Tweets dataset, the accuracy is 0.6418, the recall is 0.7162, and the F1 value is 0.6767. After applying the Spark computing framework, the running speed has significantly improved. The text mining news media hotspot mining method based on the co-occurrence word model proposed in this study has improved the accuracy and efficiency of mining hot topics, and has great practical significance.

摘要

当前,随着网络媒体的迅速发展,越来越多的人从网络上获取信息。然而,传统的热点挖掘算法无法实现对热点话题的精确快速把控。针对当前新闻媒体热点挖掘方法准确率低、时效性差的问题,本文提出一种基于共现词模型的热点挖掘方法。首先,提出一种基于词权重的新型共现词模型。然后,针对关键短语提取,设计一种基于共现词模型和改进平滑逆频率排序(SIFRANK)的热点挖掘算法。最后,引入Spark计算框架以提高计算效率。实验结果表明,新词发现算法在微博短新闻数据集和微博短文本数据集中分别发现了16871个和17921个新词。改进后的SIFRANK获取的关键词热度权重值分别达到0.9356、0.9991和0.6117。在新冠疫情推文数据集中,准确率为0.6223,召回率为0.7015,F1值为0.6605。在当选总统推文数据集中,准确率为0.6418,召回率为0.7162,F1值为0.6767。应用Spark计算框架后,运行速度显著提高。本文提出的基于共现词模型的文本挖掘新闻媒体热点挖掘方法提高了热点话题挖掘的准确率和效率,具有重要的现实意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验