Suppr超能文献

基于改进注意力机制与特征融合的车辆和行人检测算法研究

Research on a vehicle and pedestrian detection algorithm based on improved attention and feature fusion.

作者信息

Liang Wenjie

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China.

出版信息

Math Biosci Eng. 2024 Apr 26;21(4):5782-5802. doi: 10.3934/mbe.2024255.

Abstract

With the widespread integration of deep learning in intelligent transportation and various industrial sectors, target detection technology is gradually becoming one of the key research areas. Accurately detecting road vehicles and pedestrians is of great significance for the development of autonomous driving technology. Road object detection faces problems such as complex backgrounds, significant scale changes, and occlusion. To accurately identify traffic targets in complex environments, this paper proposes a road target detection algorithm based on the enhanced YOLOv5s. This algorithm introduces the weighted enhanced polarization self attention (WEPSA) self-attention mechanism, which uses spatial attention and channel attention to strengthen the important features extracted by the feature extraction network and suppress insignificant background information. In the neck network, we designed a weighted feature fusion network (CBiFPN) to enhance neck feature representation and enrich semantic information. This strategic feature fusion not only boosts the algorithm's adaptability to intricate scenes, but also contributes to its robust performance. Then, the bounding box regression loss function uses EIoU to accelerate model convergence and reduce losses. Finally, a large number of experiments have shown that the improved YOLOv5s algorithm achieves mAP@0.5 scores of 92.8% and 53.5% on the open-source datasets KITTI and Cityscapes. On the self-built dataset, the mAP@0.5 reaches 88.7%, which is 1.7%, 3.8%, and 3.3% higher than YOLOv5s, respectively, ensuring real-time performance while improving detection accuracy. In addition, compared to the latest YOLOv7 and YOLOv8, the improved YOLOv5 shows good overall performance on the open-source datasets.

摘要

随着深度学习在智能交通及各工业领域的广泛融合,目标检测技术逐渐成为关键研究领域之一。准确检测道路车辆和行人对自动驾驶技术的发展具有重要意义。道路目标检测面临背景复杂、尺度变化大以及遮挡等问题。为了在复杂环境中准确识别交通目标,本文提出了一种基于增强型YOLOv5s的道路目标检测算法。该算法引入了加权增强极化自注意力(WEPSA)自注意力机制,利用空间注意力和通道注意力来强化特征提取网络提取的重要特征,并抑制无关的背景信息。在颈部网络中,我们设计了加权特征融合网络(CBiFPN)以增强颈部特征表示并丰富语义信息。这种策略性的特征融合不仅提高了算法对复杂场景的适应性,还提升了其鲁棒性能。然后,边界框回归损失函数使用EIoU来加速模型收敛并减少损失。最后,大量实验表明,改进后的YOLOv5s算法在开源数据集KITTI和Cityscapes上的mAP@0.5分数分别达到了92.8%和53.5%。在自建数据集上,mAP@0.5达到88.7%,分别比YOLOv5s高1.7%、3.8%和3.3%,在提高检测精度的同时确保了实时性能。此外,与最新的YOLOv7和YOLOv8相比,改进后的YOLOv5在开源数据集上展现出良好的整体性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验